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A large-deviation principle is proved for the empirical measures of independent and identically

distributed random variables with a topology based on functions having only some exponential

moments. The rate function differs from the usual relative entropy: it involves linear forms which are

no longer measures. Following Stroock and Zeitouni, the Gibbs conditioning principle (GCP) is then

derived with the help of the previous result. Apart from a more direct proof than has previously been

available, the main improvements with respect to GCPs already published are the following:

convergence holds in situations where the underlying log-Laplace transform (the pressure) may not be

steep and the constraints are built on energy functions admitting only some finite exponential

moments. Basic techniques from the theory of Orlicz spaces appear to be a powerful tool.
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1. Introduction

Let (Yi)i>1 be a sequence of independent and identically distributed random variables with

common law � on a measurable space (�, A). The empirical measures

LY
n ¼

1

n

Xn

i¼1

�Yi
,

where �a is the Dirac measure at a, are random elements in the set P of the probability

measures on (�, A).

1.1. Sanov’s theorem

Sanov’s theorem describes the limiting behaviour of n�1 logP(LY
n 2 �) as n tends to infinity,

by means of a large-deviation principle (LDP) whose good rate function is given for any

� 2 P by
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H(�j�) ¼
ð
�

log
d�

d�

� 	
d� if �� �,

and 1 otherwise: this is the relative entropy of � with respect to �. For this LDP, the

topology on P is � (P, B), the coarsest topology which makes the evaluations

� 2 P 7!
Ð
� f d� 2 R continuous for all f in the space B of the bounded measurable

functions on �.

In the present paper, this LDP is extended by considering a stronger topology where B is

replaced by the space L
 of all functions f with some finite exponential moments with

respect to �: ð
�
eaj f j d� ,1, for some a . 0: (1:1)

We identify this space as the Orlicz space associated with the following norm:

k f k
 ¼ inf a . 0,

ð
�



f

a

� 	
d� < 1

( )
, where 
(x) ¼ ejxj � jxj � 1:

A precise description of the space of continuous linear forms of this non-reflexive Banach

space allows us to define the state space for the extended Sanov theorem (see Section 2 for

details). This space is no longer P, but a different set Q of all non-negative continuous linear

forms on L
 with unit mass. In particular, the effective domain of the relative entropy H is a

strict subset of Q. The topology on Q is � (Q, L
) and the rate function I has the form (for

any ‘ 2 Q such that I(‘ ) ,1)

I(‘ ) ¼ H(‘ aj�)þ sup h‘ s, f i; f ,

ð
�
e f d� ,1

�  
,

where ‘ ¼ ‘ a þ ‘ s is uniquely decomposed into the sum of a probability measure ‘ a which is

absolutely continuous with respect to �, and a non-negative continuous linear form ‘ s on L


which is not �-additive (if non-null).

The space of singular forms is the annihilator of the space M
 of all functions admitting

all exponential moments (see Section 2.1). In particular, the ‘mass’ of ‘ s is h‘ s, 1i ¼ 0,

although ‘ s > 0 may not be zero. For more details on this subject, see Giner (1976) and

Kozek (1980). In the context of Csiszár’s example (Section 3.4), the singular parts are

approximated in a certain sense by probability measures (Proposition 3.10 and Remark 3.6).

For a precise statement of the extended Savov theorem, see Theorem 3.2 below.

1.2. Gibbs conditioning principle

The Gibbs conditioning principle (GCP) describes the limiting behaviour as n tends to

infinity of the law of k tagged particles Y1, . . . , Yk under the constraint that LY
n belongs to

some subset A0 of P with P(LY
n 2 A0) positive for all n > 1. Typically, the expected result is

lim
n!1

P((Y1, . . . , Yk) 2 � jLY
n 2 A0) ¼ �k

�(�), (1:2)
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where �� minimizes � 7! H(�j�) subject to � 2 A0. This question is of interest in statistical

mechanics since this conditional law is a canonical distribution. A typical conditioning set is

A0 ¼ � 2 P;

ð
�
j d� ¼ E

�  
, (1:3)

where j is an energy function on the one-particle phase space �.

The close relationship between Sanov’s theorem and the GCP is well known. It has been

exploited by Csiszár (1984) and by Stroock and Zeitouni (1991). As in those works, we

shall not be able to handle the difficult and important case where P(LY
n 2 A0) ¼ 0 for

n > 1. We follow Stroock and Zeitouni (1991) in introducing blow-ups A� of

A0 ¼
T

�.0 A� such that P(LY
n 2 A�) . 0 for all n > 1 and � . 0.

With the extended Sanov theorem in hand, rather than its usual version, the proof of the

GCP is more direct and its assumptions can be significantly relaxed. On the one hand,

conditioning sets A0 as in (1.3) are naturally built on energy functions j in L
, that is,

satisfying (1.1). On the other hand, the restriction, assumed by Stroock and Zeitouni (1991),

that for all � . 0, limn!1 �n

�(fLY
n 2 A�g) ¼ 1, is removed. As a consequence, it is proved

that the GCP still holds in situations where a lack of steepness of the pressure

� 7! log
Ð
� e�j d� occurs (see Csiszár’s example in Sections 3.4 and 4.4). The GCP we

have obtained is stated in Theorem 4.2.

Let us emphasize that the introduction of Orlicz spaces, and specifically of basic duality

results for Orlicz spaces (recalled in Section 2), is of prime necessity in obtaining direct

proofs of our main results.

1.3. Review of the literature

Sanov (1961) proved the LDP for LY
n with � ¼ R and the weak topology on P. This LDP is

extended to the situation where � is a Polish space by Donsker and Varadhan (1976) and

Bahadur and Zabell (1979) for the weak topology. Groeneboom et al. (1979) dropped the

Polish requirement and considered Hausdorff spaces. They obtained Sanov’s theorem for

the so-called 
-topology, � (P, B). De Acosta (1994) improved this result and simplified the

proof. Csiszár (1984) proved Sanov’s theorem in a general setting by means of an alternative

approach based on projection in information. Eichelsbacher and Schmock (2002) consider the

U-empirical measures

LY ,k
n ¼ 1

n � � � (n� k þ 1)

X
(i1,...,i k )

�(X i1
,...,X i k

),

where the sum is taken over all k-tuples in f1, . . . , ngk with pairwise distinct components.

The special case k ¼ 1 is an extension of Sanov’s theorem: the rate function is the usual

relative entropy. The lower bound is obtained for a topology which is slightly weaker than

� (P
, L
) and the upper bound holds for a topology on P which is slightly weaker than

� (P
, M
), where M
 stands for the space of all functions f which admit finite exponential

moments of all orders with respect to �,
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ð
�

eaj f j d� ,1, for all a . 0, (1:4)

and P
 stands for the set of all probability measures which integrate all functions in L
 or

M
. Our result for k ¼ 1 is stronger, but, on the other hand, the LDP for LY ,k
n in

Eichelsbacher and Schmock (2002) for k > 2 is far from trivial and is not a consequence of

our results.

As already mentioned, the GCP has been studied by Csiszár (1984) and by Stroock and

Zeitouni (1991). An updated presentation of the latter study is available in Dembo and

Zeitouni (1998, Section 7.3). Bolthausen and Schmock (1989) proved a GCP for the

occupation measures of uniformly ergodic Markov chains. Based on Csiszár (1984),

Aboulalaâ (1996) obtained a GCP for the empirical measures LY
n of Markov jump

processes. With the LDP for LY ,k
n in hand, Eichelsbacher and Schmock (2002) derive a

GCP, following the approach of Stroock and Zeitouni (1991). They obtain it for k tagged

particles with an energy function j in M
 (see (1.3) and (1.4)) and for a topology on P

which is slightly weaker than � (P
, M
).

Csiszár (1984) obtained alternative results with a different, powerful approach. In

particular, he proved the convergence in information of the conditioned laws which implies

their convergence in variation, and introduced the notion of generalized I-projection so that

the GCP holds even with energy functions satisfying (1.1).

1.4. Outline of the paper

We recall in Section 2 a few definitions and results about Orlicz spaces: it is natural and

worthwhile to express exponential moment conditions ((1.1) and (1.4)) in terms of such

spaces (see Section 2.3). We prove the LDP in Section 3. The main result is Theorem 3.2,

which states the LDP and describes the associated rate function. We study the GCP in Section

4, the main statement of which is Theorem 4.2.

2. Orlicz spaces

In this section, some elementary facts about Orlicz spaces and their duals are recalled without

proof for future use.

2.1. Basic definitions and results

A Young function Ł is an even, convex, [0, 1]-valued function satisfying lims!1 Ł(s) ¼ 1
and Ł(s0) ,1 for some s0 . 0. Let � be a probability measure on the measurable space

(�, A). Consider the following vector spaces of measurable functions:
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LŁ ¼ f : �! R, 9a . 0,

ð
�
Ł

f

a

� 	
d� ,1

( )
,

MŁ ¼ f : �! R, 8a . 0,

ð
�
Ł

f

a

� 	
d� ,1

( )
:

The spaces LŁ and MŁ correspond to LŁ and MŁ when �-almost everywhere equal functions

are identified. Consider also the following Luxemburg norm on LŁ:

k f kŁ ¼ inf a . 0,

ð
�
Ł

f

a

� 	
d� < 1

( )
: (2:1)

Then (LŁ, k:kŁ) is a Banach space called the Orlicz space associated with Ł. MŁ is a

subspace of LŁ. If Ł is a finite function, MŁ is the closure of the space of step functionsPn
i¼1ai1Ai

under k:kŁ. For more details and further reading, see Adams (1975) and Rao and

Ren (1991). Let Ł� be the convex conjugate of the Young function Ł:

Ł�(t) ¼ sup
s2R
fst � Ł(s)g:

As Ł� is a Young function, one can consider the Orlicz space LŁ� . Hölder’s inequality holds

between LŁ and LŁ� : for all f 2 LŁ and g 2 LŁ�,

fg 2 L1( �) and

ð
�
j fgjd� < 2k f kŁkgkŁ� : (2:2)

A Young function Ł satisfies the ˜2 condition if there exist K . 0 and s0 > 0 such that, for

all s > s0, Ł(2s) < KŁ(s). If Ł satisfies the ˜2 condition, then MŁ ¼ LŁ (see Rao and Ren

1991, Corollary 5, p. 77).

2.2. Duality in Orlicz spaces

By (2.2), any g in LŁ� defines a continuous linear form on LŁ for the duality bracket

h f , gi ¼
Ð

fg d�. In the general case, the topological dual space of (LŁ, k:kŁ) may be larger

than LŁ� . Nevertheless, we always have the following result:

Theorem 2.1. Let Ł be a finite Young function and Ł� its convex conjugate. The topological

dual space of MŁ can be identified, by means of the previous duality bracket, with

LŁ� : M9Ł ’ LŁ� .

For a proof, see Rao and Ren (1991).

Remark 2.1. If Ł satisfies the ˜2 condition, then L9Ł ’ LŁ�

As LŁ is a Riesz space (see Bourbaki 1961), one can define the absolute value j‘j of any

‘ 2 L9Ł.
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Definition 2.2. Let ‘ 2 L9Ł. ‘ is said to be �–singular if there exists a sequence

A1 % A2 % A3 % . . . of measurable sets such that

lim
k

�(Ak) ¼ 0 and hj‘j, 1�nAk
i ¼ 0, 8k > 1:

Let us denote by Ls
Ł the subspace of all �-singular elements of L9Ł.

Theorem 2.3. Let Ł be a finite Young function. The topological dual space L9Ł of (LŁ, k � kŁ)

is the direct sum

L9Ł ’ (LŁ� � �)' Ls
Ł:

Therefore any continuous linear form ‘ on LŁ is uniquely decomposed as ‘ ¼ ‘ a þ ‘ s, where

‘ a and ‘ s are continuous, d‘ a=d� 2 LŁ� and ‘ s is �-singular.

For a proof of this result, see Kozek (1980, Theorem 2.2). ‘ a is called the absolutely

continuous part of ‘ and ‘ s its singular part.

Proposition 2.4. Let Ł be a finite Young function. Then, for any f 2 MŁ and ‘ s 2 Ls
Ł, we

have h‘ s, f i ¼ 0.

For a proof of this result, see Kozek (1980).

2.3. Orlicz spaces and exponential moment conditions

Consider

ª(s) ¼ es � s� 1 and 
(s) ¼ ª(jsj): (2:3)


 is a Young function and the two following equivalences are straightforward:

9a . 0,

ð
eaj f jd� ,1

� 	
, f 2 L
,

8a . 0,

ð
eaj f jd� ,1

� 	
, f 2 M
:

If f 2 L
, we shall say that f admits some exponential moments; if f 2 M
, we will say that

f admits all its exponential moments.

3. An extension of Sanov’s theorem

The main result of this section is Theorem 3.2, which states the LDP and describes the

associated rate function. The LDP is partially proved in Section 3.2 via a projective limit

technique which yields a convex conjugate rate function ¨�. In Section 3.3, we identify the

rate function by comparing it to an auxiliary function J and by using a result due to R.T.
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Rockafellar on the representation of convex functionals. In Section 3.4, we study an example

due to Csiszár in order to show the existence of singular parts.

3.1. The extended Sanov theorem

Let us consider L
 and its algebraic dual space L�
 . Note that almost everywhere equal

functions are not identified when dealing with L
. Consider the collection of linear forms on

L�
 denoted by Gf : ‘ 7! h‘, f i, f 2 L
. Denote by � (L�
 , L
) the coarsest topology on L�

which makes every Gf continuous, and by E the smallest � -field on L�
 which makes them

measurable. We are interested in the large-deviation behaviour of

LY
n ¼

1

n

Xn

i¼1

�Yi
2 L�
 ,

where fYigi>1 is a sequence of �-valued independent and identically �-distributed variables.

Henceforth, the identifications

L
� � L9
 � L�
 � L�
 , (3:1)

prevail, where L
� is the Orlicz space associated with the Young function 
�, L9
 (L�
 ) is the

topological (algebraic) dual of L
, and L�
 is the algebraic dual of L
. For the first

identification, take f 2 L
� ; then f � 2 L9
 by Hölder’s inequality (2.2). We write

L
� ¼ L
� � � for short. The second identification is straightforward. For the third

identification, let ‘ 2 L�
 and consider ~‘‘ defined on L�
 by h~‘‘, f i ¼ h‘, _ff i, where f 2 L


and _ff 2 L
 is the equivalence class of f with respect to �-almost everywhere equality. The

form ~‘‘ is well defined and the third identification holds.

The state space of the extended Sanov theorem is

Q ¼˜ f‘ 2 L�
 ; ‘ > 0, h‘, 1i ¼ 1g:

This is endowed with EQ, the �-field induced by E on Q. Note that L
, Q, E and EQ depend

on �.

The rate function of the extended Sanov theorem is

I(‘ ) ¼

ð
�

log
d‘ a

d�

� 	
d‘ a þ sup

f 2D�

h‘ s, f i if ‘ 2 Q \ L9
,

1 otherwise,

8><
>:

where ‘ ¼ ‘ a þ ‘ s is the decomposition stated in Theorem 2.3, D� ¼ f f 2 L
; Ee f (Y ) ,1g
and E stands for the expectation with respect to �.

Remark 3.1. Due to (3.1), the set Q \ L9
 is well defined.

Definition 3.1. The above rate function I(‘ ) is the extended relative entropy of ‘ with respect

to �.
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We shall write I(‘ ) ¼ Ia(‘ )þ Is(‘ ) ¼ Ia(‘ a)þ Is(‘
s), where

Ia(‘ ) ¼
ð
�

log
d‘ a

d�

� 	
d‘ a,

Is(‘ ) ¼ supfh‘ s, f i; f , Ee f (Y ) ,1g:

The following theorem is the main result of the section.

Theorem 3.2 (Extended Sanov theorem). The empirical measures fLY
ngn>1 satisfy the LDP

in Q endowed with the �-field EQ and the topology � (Q, L
) with the rate function I. This

means that:

(i) for all measurable closed subsets F of Q,

lim sup
n!1

1

n
logP(LY

n 2 F) < �inf
‘2F

I(‘ );

(ii) for all measurable open subsets G of Q,

lim inf
n!1

1

n
logP(LY

n 2 G) $ �inf
‘2G

I(‘ ):

Moreover, I is convex and is a good rate function: its sublevel sets fI < Æg, Æ > 0, are

compact.

Proof. The LDP in � (L�
 , L
) is proved in Lemma 3.4 with the convex rate function ¨�. By

Proposition 3.8, ¨� ¼ I . But the domain of I is included in Q, thus the LDP holds on

� (Q, L
) (see Dembo and Zeitouni 1998, Lemma 4.1.5(b)). This completes the proof of the

theorem. h

Remark 3.2. Let I(‘ ) ,1. Then ‘ 2 L9
, ‘
a > 0 and, by Proposition 2.4, h‘ a, 1i ¼ 1. Hence

d‘ a=d� is a probability density and Ia is close to the usual relative entropy H(�j�). The

difference lies in the fact that Ia is defined over L�
 , whereas H is defined over P.

Remark 3.3. The trace of the decomposition of L9
 into absolutely continuous and singular

components (Theorem 2.3) on Q is

Q \ L9
 ¼ (L
� \ P)' (Ls

 \ f‘ > 0g):

Remark 3.4. We cannot expect the LDP to hold under the strong topology � (L�
 , L
) with

the entropy H(� j�) as a good rate function. Indeed, Schied (1998) proved that if the topology

is too wide (the so-called 
�-topology, where � admits only some exponential moments), then

fH < Æg is no longer compact. The same argument holds in our context:

f‘ 2 Q; H(‘ a) < Æg ¼ f f �; f 2 L
� , f > 0,

ð
�

f d� ¼ 1,

ð
�

f ln f d� < Æg þ (Ls

 \ f‘ > 0g),
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which is not compact.

Let P
 denote the set of all probability measures which integrate all functions in

M
 : P
 ¼ f� 2 P;
Ð
�j f jd� ,1, 8 f 2 M
g. Let us endow it with the � -field

� (� 7!
Ð
� f d�; f 2M
) and with the topology � (P
, M
).

Corollary 3.3. The empirical measures fLY
ngn>1 satisfy the LDP in (P
, � (P
, M
)) with

the good rate function H(� j�).

This is in accordance with the result obtained by Eichelsbacher and Schmock (2002, Theorem

1.8).

Proof. This is a direct consequence of the contraction principle applied to the transformation

‘ 2 Q ! ‘jM

2M�
 . Indeed, by Proposition 2.4 we have ‘jM


¼ ‘a
jM

¼ ‘ a (where the last

equality is an identification). Hence,

inffI(‘ ); ‘jM

¼ �g ¼ inffIa(�)þ Is(‘

s); ‘ a ¼ �g ¼ Ia(�) ¼ H(�j�):

The result follows from the obvious continuity of the transformation considered. h

3.2. Proof of the large-deviation principle

Lemma 3.4 below states the LDP with the rate function ¨� expressed as the convex

conjugate of

¨( f ) ¼ log Ee f (Y ) ¼ log

ð
�
e f d� 2 (�1, 1], f 2 L
:

Lemma 3.4. The empirical measures fLY
ngn>1 satisfy the LDP (in the sense of Theorem 3.2)

in L�
 endowed with the �-field E and the topology � (L�
 , L
) with the good rate function

¨�(‘ ) ¼ sup f 2L
fh‘, f i �¨( f )g.

Proof. The proof is based on the Dawson–Gärtner projective limit approach. By Theorem

4.6.9 in Dembo and Zeitouni (1998), it is sufficient to check that, for all d > 1 and

f 1, . . . , f d 2 L
, (hLY
n , f 1i, . . . , hLY

n , f di) satisfies an LDP. But

(hLY
n , f1i, . . . , hLY

n , f di) ¼
1

n

Xn

i¼1

( f 1(Yi), . . . , f d(Yi)) ¼
1

n

Xn

i¼1

f(Yi),

where f(x) ¼ f 1(x), . . . , f d(x)) is a Rd-valued function. Then, ff(Yi)g is a sequence of

independent and identically distributed, Rd-valued random variables. Since f 1, . . . , f d 2 L
,

f(Yi) admits exponential moments. By Cramér’s theorem on Polish spaces (Dembo and

Zeitouni 1998, Theorem 6.1.3 and Corollary 6.1.6), n�1
Pn

i¼1f(Yi) satisfies the LDP in Rd

with the good rate function
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Id(x) ¼ sup
º2Rd

fº � x� log Eeº�f(Y )g, x 2 Rd :

By the Dawson–Gärtner theorem, LY
n ¼ n�1

Pn
i¼1�Yi

satisfies the LDP with the good rate

function given, for any ‘ 2 L�
 , by

sup
Xd

i¼1

ºih‘, f ii � log Ee�ºi f i(Y ); d > 1, º 2 Rd , f1, . . . , f d 2 L


( )

¼ sup
f 2L

fh‘, f i � log Ee f (Y )g ¼ ¨�(‘ ),

which is the desired result. h

3.3. Identification of the rate function

We prove the identity I ¼ ¨� in Proposition 3.8. Lemmas 3.5–3.7 are required preliminary

results.

Let us consider J (‘ ) ¼ sup f 2L
fh‘� �, f i �
Ð
�ª( f ) d�g, where ª is given by (2.3).

Lemma 3.5. Let ‘ 2 L�
 . Then:

(i) ¨�(‘ ) ,1) ‘ 2 L�
 ;

(ii) J (‘ ) < ¨�(‘ );

(iii) ¨�(‘ ) ,1) ‘ 2 Q \ L9
.

Proof. (i) Let f 2 L
 be such that f ¼ 0 �-almost everywhere. Then, for any real º,

¨(º f ) ¼ 0 and ºh‘, f i < ¨�(‘ )þ¨(º f ) ¼ ¨�(‘ ). Hence, ¨�(‘ ) ,1 implies h‘, f i ¼ 0.

Thus ‘ is constant over the equivalence classes, that is, ‘ 2 L�

(ii) Since, for all t > 0, log t < t � 1, we have �Ee f (Y ) þ 1 < �log Ee f (Y ) and

J (‘ ) ¼ sup
f 2L


h‘, f i �
ð
�
(e f � 1) d�

�  
< ¨�(‘ ):

(iii) As ¨�(‘ ) ,1 implies ‘ 2 L�
 , let us consider ‘ 2 L�
 .

For all f 2 L
, h‘� �, f i < J (‘ )þ
Ð
�ª( f )d�. As ª(s) < 
(s) ¼ ª(jsj), we have

h‘� �, f i < J (‘ )þ
Ð
�
( f )d�. Choosing � ¼ +1=k f k
 when f 6¼ 0, the definition of the

Luxemburg norm (2.1) yields
Ð
�
(� f )d� ¼ 1, which implies jh‘� �, f ij < (J (‘ )þ 1)k f k
.

This inequality still holds with k f k
 ¼ 0. Therefore ‘� � 2 L�
 is k � k
-continuous: ‘ 2 L9
,

since J (‘ ) < ¨�(‘ ) ,1.

Suppose that h‘, 1i ¼ a 6¼ 1. Then ¨�(‘ ) > h‘, º1i � log Eeº1 ¼ º(a� 1) which tends to

1 as º tends to infinity with the sign of a� 1. Therefore, h‘, 1i ¼ 1 if ¨�(‘ ) ,1.

Suppose now that there exists f > 0 with h‘, f i , 0. Let º > 0. Then ¨�(‘ )

> h‘, �º f i � log Ee�º f > h‘, �º f i tends to 1 as º tends to 1. Thus ¨�(‘ ) ,1
implies ‘ > 0 and the lemma is proved. h

Lemma 3.6. Let ‘ 2 L9
. Then, for all f 2 L
:
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(i) limn!1h‘, f ni ¼ h‘ a, f i, where ( f n) is any sequence of bounded measurable

functions which converges pointwise to f and such that j f nj < j f j, for all n > 1.

(ii) limn!1h‘, 1fj f j.ng f i ¼ h‘ s, f i.

Proof. (i) Since f n is bounded, h‘ s, f ni ¼ 0 (see Proposition 2.4). Therefore h‘, f ni
¼ h‘ a, f ni ¼

Ð
f n � (d‘ a=d�) � d�, with d‘ a=d� 2 L
� . The limit follows from the dominated

convergence theorem.

(ii) We have h‘, 1fj f j.ng f i ¼ h‘ s, 1fj f j.ng f i þ h‘ a, 1fj f j.ng f i. The dominated conver-

gence theorem implies that limn!1h‘ a, 1fj f j.ng f i ¼ 0. Since 1fj f j<ng f is bounded, h‘ s, f i
¼ h‘ s, 1fj f j.ng f i (see Proposition 2.4). h

Lemma 3.7. For all ‘ in L9
, ¨�(‘ ) ¼ ¨�(‘ a)þ supfh‘ s, f i; f 2 dom¨g, where

dom¨ ¼ f f 2 L
, ¨( f ) ,1g is the effective domain of ¨.

Remark 3.5. Clearly, dom¨ ¼ D�.

Proof. We first introduce some notation which is customary in convex analysis. Let A be a

convex subset of L
 and let ‘ be in L9
. The convex indicator function of A is

�( f jA) ¼
0 if f 2 A,

þ1 otherwise;

�

its convex conjugate,

��(‘jA) ¼ sup
f 2L


fh‘, f i � �( f jA)g ¼ sup f 2Ah‘, f i,

is called the support functional of A.

For any ‘ 2 L9
, we have

¨�(‘ ) ¼ sup
f 2L


fh‘ a, f i �¨( f )þ h‘ s, f i � �( f jdom¨)g

< ¨�(‘ a)þ ��(‘ sjdom¨):

To prove the converse, let f , g 2 L
. For n > 1, define un ¼ f n þ g1fj gj.ng with

f n ¼ (�n _ f ^ n)1fj f j<ng. Then

¨�(‘ ) > h‘, uni �¨(un) ¼ h‘, f ni �¨(un)þ h‘, g1fj gj.ngi:

Since eun < 1þ e f þ e g , it follows from the dominated convergence theorem that

¨(un)! ¨( f ). Hence, ¨�(‘ ) > h‘ a, f i �¨( f )þ h‘ s, f i by Lemma 3.6. This completes

the proof. h

Proposition 3.8. The identity ¨� ¼ I holds on L�
 .

Proof. By Lemma 3.5, the effective domain of ¨� is included in Q \ L9
, and by Lemma 3.7,

for all ‘ 2 L9
, ¨
�(‘ ) ¼ ¨�(‘ a)þ Is(‘

s). Taking Remark 3.3 into account, it remains to prove
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that, for all ‘ 2 P \ L
� , ¨
�(‘ ) ¼ H(‘j�). Let ‘ ¼ h� belong to P \ L
� , that is, h 2 L
� ,

h > 0,
Ð
�h d� ¼ 1. By a direct computation, we have, for all f 2 dom¨,

¨( f ) ¼ inf
º2R

�º� 1þ eº
ð
�
e f d�

�  
: (3:2)

Therefore,

¨�(h�) ¼ sup
f 2dom ¨

hh�, f i �¨( f )f g

¼ sup
º2R, f 2dom ¨

hh�, f i þ ºþ 1� eº
ð
�
e f d�

�  
(3:3a)

¼ sup
º2R, f 2dom ¨

hh�, ºþ f i �
ð
�
(eºþ f � 1) d�

�  
(3:3b)

¼ sup
g2dom ¨

ð
�

hg d��
ð
�
(e g � 1) d�

�  

¼
ð
�
(h log h� hþ 1) d� (3:3c)

¼
ð
�

h log h d� ¼ H(h�j�), (3:3d)

where (3.3a) comes from (3.2), (3.3b) and (3.3d) follow from the fact that � and h� are

probability measures and (3.3c) follows from a general result due to Rockafellar (1968,

Theorem 2), noting that the convex conjugate of es � 1 is t log t � t þ 1. This completes the

proof. h

3.4. Csiszár’s example

In this subection, we encounter a minimizer of the extended relative entropy under a linear

constraint with a non-null singular part. We deal here with a probability distribution � which

already appears in Csiszár (1984, Example 3.2) and in Dembo and Zeitouni (1998, Exercise

7.3.11). Let � be the probability measure on � ¼ [0, 1) defined by �(dy) ¼
Ce�y(1þ y3)�1 dy. Let fYig be a sequence of independent and identically distributed,

[0, 1)-valued random variables with distribution �. We consider

LY
n ¼

1

n

Xn

i¼1

�Yi
and ŜSn ¼

1

n

Xn

i¼1

Yi:

By the usual Sanov theorem, LY
n satisfies the LDP with the good rate function H(� j�) in

(P, � (P, B)). By Cramér’s theorem, ŜSn also satisfies the LDP with the good rate function

¸�(x) ¼ supº2Rfxº�¸(º)g, where ¸(º) ¼ log
Ð

[0,1)ce(º�1) y(1þ y3)�1 dy. One can ask if

the contraction principle holds between LY
n and ŜSn. Let us write u : [0, 1)! [0, 1),
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u(y) ¼ y, so that hLY
n , ui ¼ ŜSn. As u is not bounded, one cannot apply the contraction

principle to the usual Sanov theorem to obtain

inffH(�j�), � 2 P, h�, ui ¼ xg ¼ ¸�(x), x > 0: (3:4)

It turns out that this equality holds (see Proposition 3.10 below) but that the infimum is not

attained in P when x is large. In the notation of Section 2.3, u belongs to L
( �). Therefore,

Gu : L�
 ( �)! R, Gu(‘ ) ¼ h‘, ui is a � (L�
 , L
)-continuous linear form. One observes here

the advantage of using the � (L�
 , L
)-topology, which is wider than the � (P, B)-topology. By

Theorem 3.2 and the contraction principle, Gu(LY
n ) ¼ n�1

Pn
i¼1Yi ¼ ŜSn satisfies the LDP with

the good rate function

I9(x) ¼ inffI(‘ ); ‘ 2 Q; h‘, ui ¼ xg:

As I is a good rate function, there exists at least one minimizing argument ‘x 2 Q satisfying

I(‘x) ¼ I9(x) and h‘x, ui ¼ x. By the uniqueness of the rate function (Dembo and Zeitouni

1998, Lemma 4.1.4), I9 ¼ ¸�. Therefore, the identification

¸�(x) ¼ inffI(‘ ); ‘ 2 Q; h‘, ui ¼ xg ¼ I(‘x) (3:5)

holds for some ‘x 2 Q satisfying h‘x, ui ¼ x.

Proposition 3.9. Let x� ¼ ¸9(1�).

(i) For any 0 , x , x�, there exists a unique minimizer ‘x in (3.5). It is given by

‘x ¼ �x, where

�x(dy) ¼ exp(ºx y�¸(ºx))�(dy)

and º ¼ ºx is the unique solution of ¸9(º) ¼ x.

(ii) For x ¼ x�, statement (i) still holds with ºx� ¼ 1, ¸9(1�) ¼ x� and �x� ¼ �� given

by

��(dy) ¼ e y�¸(1)�(dy) ¼ c9

1þ y3
dy:

(iii) For all x > x� and all minimizing arguments ‘x of (3.5), we have ‘a
x ¼ ��. Moreover,

h��, ui ¼ x�, h‘s
x, ui ¼ x� x� and

I(‘x) ¼ H(��j�)þ Is(‘
s
x), (3:6)

with H(��j�) ¼ ¸�(x�) and Is(‘
s
x) ¼ x� x�.

This proposition means that when x . x�, the minimizers of (3.5) cannot be probability

measures. The contribution of the absolutely continuous part vanishes at x�: h��, ui ¼ x�.
It is the singular parts (not unique in general, see Proposition 4.4) which fill the gap

between x� and x: h‘s
x, ui ¼ x� x�. Moreover, the contribution of these singular parts

appears in the rate function (see (3.6)). Finally, Is(‘
s) ¼ sup f 2D�h‘ s, f i implies that these

singular parts are non-null whenever x . x�.
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Proof. We prove (i) and (ii) together. Clearly, for all 0 , x < x�, we have h�x, ui ¼ x. Let ‘
be such that hu, ‘i ¼ x and (without loss of generality) I(‘ ) ,1. Then, ‘ ¼ ‘ a þ ‘ s, with

‘ a 2 P and ‘ s > 0. Let h‘ a, ui ¼ x9. We have h‘ s, ui ¼ x� x9 > 0 and

I(‘ )� I(�x) ¼ H(‘ aj�)� H(�xj�)þ I(‘ s)

¼ H(‘ aj�x)þ
ð

log
d�x

d�

� 	
d(‘ a � �x)þ I(‘ s)

¼ H(‘ aj�x)þ I(‘ s)� ºx(x� x9)

> H(‘ aj�x)þ h‘ s, ui � ºx(x� x9) (3:7a)

> H(‘ aj�x) (3:7b)

> 0,

where (3.7a) follows from I(‘ s) ¼ supfh‘ s, vi; v 2 D�g > h‘ s, ui and (3.7b) follows from

h‘ s, ui � ºx(x� x9) ¼ (1� ºx)(x� x9) > 0.

For the equality to hold, it is necessary that ‘ a ¼ �x. Hence I(‘ s) ¼ 0, which in turn

implies that ‘ s ¼ 0. Finally, �x is the unique minimizer of (3.5).

We now turn to the proof of (iii). For all º < 1, both ¸(º) and ¸9(º) are finite; when

º . 1, ¸(º) ¼ 1. As ¸9(1�) ¼ x� is finite, ¸ is not steep. Standard convexity arguments

lead to ¸�(x�) ¼ x� �¸(1) and an easy computation yields

¸�(x) ¼ ¸�(x�)þ x� x�, x > x�: (3:8)

The rest of the proof is divided into three steps.

Step 1. Let ‘x (‘ y) be any minimizing argument of I9(x) (I9(y)): I(‘x) ¼ I9(x) ¼ inffI(‘ ),

h‘, ui ¼ xg. Let us prove that, for all 0 < Æ, � < 1, Æþ � ¼ 1, the following identity holds:

8x, y > x�, I(Æ‘x þ �‘ y) ¼ ÆI(‘x)þ �I(‘ y): (3:9)

By definition of ‘x and ‘ y, we obtain h‘x, ui ¼ x and h‘ y, ui ¼ y and, by (3.8), I(‘x)

¼ ¸�(x) ¼ (x� x�)þ¸�(x�). Similarily, I(‘ y) ¼ (y� x�)þ¸�(x�). The convexity of I

implies that

I(Æ‘x þ �‘ y) < ÆI(‘x)þ �I(‘ y) ¼ ¸�(x�)þ Æxþ �y� x�

¼ ¸�(Æxþ �y) ¼ I9(Æxþ �y):

But I9(Æxþ �y) ¼ inffI(‘ ); ‘ 2 L9
; h‘, ui ¼ Æxþ �yg and Æ‘x þ �º y satisfies the constraint

hÆ‘x þ �‘ y, ui ¼ Æxþ �y. Thus I9(Æxþ �y) < I(Æ‘x þ �‘ y) and (3.9) holds.

Step 2. Let us show that for any x, y > x� and ‘x (‘ y) any minimizing argument of I9(x)

(I9(y)), we have ‘a
x ¼ ‘a

y ¼
˜
� where ‘x ¼ ‘a

x þ ‘s
x (‘ y ¼ ‘a

y þ ‘s
y).

By the definition of I , we have:
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I(Æ‘x þ �‘ y) ¼ Ia(Æ‘a
x þ �‘a

y)þ Is(Æ‘
s
x þ �‘s

y),

ÆI(‘x)þ �I(‘ y) ¼ ÆIa(‘a
x)þ �Ia(‘a

y)þ ÆIs(‘
s
x)þ �Is(‘

s
y):

The convexity of Ia and Is implies

Ia(Æ‘a
x þ �‘a

y) < ÆIa(‘a
x)þ �Ia(‘a

y),

Is(Æ‘s
x þ �‘s

y) < ÆIs(‘
s
x)þ �Is(‘

s
y):

(3:10)

By (3.9), I(Æ‘x þ �‘ y) ¼ ÆI(‘x)þ �I(‘ y). Therefore, equality must hold in (3.10). But due to

the strict convexity of Ia, Ia(Æ‘a
x þ �‘a

y) ¼ ÆIa(‘a
x)þ �Ia(‘a

y) implies that ‘a
x ¼ ‘a

y ¼ �.

Step 3. Let us show that, for all x > x�, Ia(‘a
x) ¼ ¸�(x�) and Is(‘

s
x) ¼ x� x�.

Considering ��(dy) ¼ e y�¸(1)�(dy), one shows that h��, ui ¼ x�, I(��) ¼ Ia(��) ¼ ¸�(x�).
Hence, �� satisfies (3.5) at x�. Thus, �� ¼ � and for all x > x�, ‘a

x ¼ ��. It follows that

Ia(‘a
x) ¼ ¸�(x�) and Is(‘

s
x) ¼ x� x�. h

Proposition 3.10. Equality (3.4) holds for all x > 0.

Remark 3.6. In the proof below, we show that

�n ¼ 1� 1

n

� 	
�� þ

1

n

1 I n

�(I n)
� (3:11)

is a sequence satisfying

H(�nj�) . ¸�(x), h�n, �i ¼ x and lim
n!1

H(�nj�) ¼ ¸�(x):

In Proposition 3.9(iii), it is shown that the minimizers ‘x have the form ‘x ¼ �� þ ‘s
x.

Therefore, the second term on the right-hand side of (3.11) contributes asymptotically to ‘s
x in

the sense that

lim
n!1

1

n

1 I n

�(I n)
�; u

& '
¼ h‘s

x, ui ¼ x� x�:

Proof. For x ¼ 0, ¸�(0) ¼ 1 and there is no � 2 P such that �� � and h�, ui ¼ 0. For

0 , x < x�, the desired equality is a consequence of (i) and (ii) in Proposition 3.9. Let us

now consider the case x . x�. First note that

inffH(�j�), � 2 P, h�, ui ¼ x,g ¼ inffI(�), � 2 P, h�, ui ¼ xg
> inffI(‘ ), ‘ 2 Q, h‘, ui ¼ xg ¼ ¸�(x):

In particular, H(�j�) > ¸�(x) if h�, ui ¼ x (in fact, this is a strict inequality by Proposition

3.9(iii)). Therefore, it is sufficient to exhibit a minimizing sequence (�n) satisfying �n 2 P,

h�n, ui ¼ x and limn!1 H(�nj�) ¼ ¸�(x). We take it in the form (3.11), where the interval

I n must be chosen such that h�n, ui ¼ x. As h��, ui ¼ x�, I n must satisfy
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ð
In

u d�

�(I n)
¼ x� þ n(x� x�):

Consider In(t) ¼ [x� þ n(x� x�)� t, x� þ n(x� x�)þ 1] and

�(t) ¼

ð
I n( t)

u d�

�(I n(t))
¼

ð
I n( t)

yf (y) dy

�(I n(t))
,

where f is the density of �. Simple computations yield

�(0) . x� þ n(x� x�), �(1) , x� þ n(x� x�):

As � is continuous, there exists Æn 2 [0, 1] such that �(Æn) ¼ x� þ n(x� x�). Write

I n ¼˜ I n(Æn). We now estimate H(�nj�):

H(�nj�) ¼
ð

[0,1)n I n

log
d�n

d�

� 	
d�n þ

ð
I n

log
d�n

d�

� 	
d�n

< H(��j�)þ
ð

I n

log
d�n

d�

� 	
d�n ¼ ¸�(x�)þ

ð
I n

log
d�n

d�

� 	
d�n

and

d�n

d�
(y) ¼ e y�¸(1) 1þ 1

n

� 	
þ 1 I n

(y)

n�(I n)
: (3:12)

We shall use the inequality

(aþ b) log(aþ b) < (a log a) 1þ b

a

� 	2

, 8a > e, b . 0: (3:13)

Expressions (3.12) and (3.13) yield

ð
I n

log
d�n

d�

� 	
d�n <

ð
I n

1

n�(I n)
log

1

n�(I n)

� 	
1þ e y�¸(1) 1þ 1

n

� 	
n�(I n)

� 	2

d�(y):

But if y 2 I n then

e y�¸(1) 1þ 1

n

� 	
n�(I n) �!

n!1
0:

On the other hand,

lim
n!1

1

n
log

1

n�(I n)
¼ x� x�:
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Consequently,

lim
n!1

ð
I n

1

n�(In)
log

1

n�(I n)

� 	
1þ e y�¸(1) 1þ 1

n

� 	
n�(I n)

� 	2

d�(y) ¼ x� x�,

and the proof is complete. h

4. The Gibbs conditioning principle

In this section, we apply Theorem 3.2 to derive the following Gibbs conditioning principle:

lim
�!0

lim
n!1

P((Y1, . . . , Yk) 2 �jLY
n 2 A�) ¼ �k

� (:):

This is stated in Theorem 4.2, the main result of the section. This result holds true without

any underlying law of large numbers (LLN) – that is to say, the equation

lim
n!1

�n

�fLY
n 2 A�g ¼ 1, for all � . 0, (4:1)

might not hold, as shown in Remark 4.5. Moreover, �� might not belong to the minimizers of

the set fI(‘ ); ‘ 2 A0g, where A0 and (A�)�.0 are subsets of Q specified in Assumptions A

and B below.

These features are illustrated via Csiszár’s example in Section 4.4. In our presentation,

we shall closely follow the framework of Dembo and Zeitouni (1998, Section 7.3.5).

4.1. Notation and assumptions

As before, let us consider LY
n ¼ n�1

Pn
i¼1�Yi

2 L�
 , where fYigi>1 is a sequence of �-valued

independent and identically �-distributed variables. Let �n be the product measure induced

by � on �n and Qn be the probability measure induced by �n on (Q, EQ), where Q is

equipped with the topology � (Q, L
) and its �-field EQ:

Qn(A) ¼ �nfL y
n 2 Ag, A 2 EQ:

We are interested in the limiting behaviour of the distribution of (Y1, . . . , Yk) under the

conditioning constraint fLY
n 2 A�g, for n!1 followed by �! 0. We denote this

distribution by

�n
Y k jA�

(:) ¼ �n((y1, . . . , yk) 2 � jL y
n 2 A�): (4:2)

For k ¼ 1, we write �n
Y k jA�

¼ �n
Y jA�

. We follow Stroock and Zeitouni (1991) in considering

the constraint set fLY
n 2 A�g rather than fLY

n 2 A0g where A� is a blow-up of A0. By

Assumption B below, A� must satisfy Qn(A�) . 0 whereas A0 may be a Qn-negligible set.

The following conventions prevail in this section: ˆn ¼ fLY
n 2 ˆg, A� is the � (Q, L
)-interior

of A and I(A) ¼ inffI(‘ ); ‘ 2 Ag for all A � Q.
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Assumption A. The set A0 can be written A0 ¼
T

�.0 A�, where (A�)�.0 is a family of nested

measurable � (Q, L
)-closed sets satisfying

I(A��) < I(A0), for all � . 0: (4:3)

Two important cases where (4.3) is satisfied may be considered:

(i) A0 � A��, for all � . 0;

(ii) A� ¼ A0 for all � . 0, and I(A�0) ¼ I(A0).

Remark 4.1. The topology � (Q, L
) and the �-field EQ which appear in the statement of

Assumption A are both wider than the usual 
-topology � (P, B), and the �-field Bcy (see

Dembo and Zeitouni 1998, Section 6.2). Hence more open sets and more measurable sets are

available. As an example, consider the family defined by

A� ¼ f‘ 2 Q; jh‘, ui � 1j < �g, A0 ¼ f‘ 2 Q; h‘, ui ¼ 1g,

where u satisfies condition (1.1). This family satisfies Assumption A.

The following assumption is the counterpart of assumption (A-1) in Dembo and Zeitouni

(1998, Section 7.3).

Assumption B. I(A0) ,1 and, for all � . 0, n > 1, Qn(A�) . 0.

Remark 4.2. Equation (4.1), which is part of Dembo and Zeitouni’s (1998) assumptions (see

also Eichelsbacher and Schmock 2002, Condition 1.16), enforces an LLN under the

minimizing law �� which appears in (1.2). This is not required in the present approach: by

Assumption A, one can apply Sanov’s lower bound (see the proof of Lemma 4.3 below) so

that no underlying LLN is necessary. Moreover, there exist cases where (4.1) fails while

Assumption B is still satisfied (see Remark 4.5 below).

4.2. Convex constraints

The set of minimizers is denoted by

M ¼n f‘ 2 A0; I(‘ ) ¼ I(A0)g:

The following result states that M has a special form when the constraint A0 is convex.

Lemma 4.1. Suppose that A0 is convex. Then

M¼ �� þ S,

where �� is a probability measure and S is a set of singular parts. In other words, if ‘ 2 M,

then ‘ ¼ �� þ ‘ s, where �� is the absolutely continuous part of ‘ and ‘ s 2 S is the singular

part of ‘.
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Remark 4.3. In this case, �� is the I-generalized projection of � over the set of constraint A0

in the sense of Csiszár (1984).

Proof of Lemma 4.1. Let ‘, ~‘‘ 2M. By the convexity of A0 and I, we have

I(A0) < I(Æ‘þ �~‘‘) < ÆI(‘ )þ �I(~‘‘) ¼ I(A0),

for all Æ, � > 0 such that Æþ � ¼ 1. Similarly, as Ia and I s are convex, we obtain:

Ia(Æ‘ a þ �~‘‘a) < ÆIa(‘ a)þ �Ia(~‘‘a),

Ia(Æ‘ a þ �~‘‘s) < ÆIs(‘
s)þ �Is(~‘‘

s):

Suppose that at least one of these inequalities is strict. Summing, we obtain

I(A0) , ÆI(‘ )þ �I(~‘‘) ¼ I(A0), which is false. Hence, Ia(Æ‘ a þ �~‘‘a) ¼ ÆIa(‘ a)þ �Ia(~‘‘a)

and Is(Æ‘ s þ �~‘‘s) ¼ ÆIs(‘
s)þ �Is(~‘‘

s). As Ia is strictly convex, we obtain ‘ a ¼ ~‘‘a ¼n ��. As

Is is not strictly convex, ‘ s and ~‘‘s may differ. h

We shall see in Section 4.4 that wihtin the scope of Csiszár’s example, M¼ �� þ S
where S is not reduced to a single point.

4.3. Convergence of �n
Y k jA�

to a probability distribution

In this subsection, it is assumed that � is a separable metric space and that its �-field is its

Borel �-field. Denote by Cb(�k) the set of continuous and bounded functions over �k. The

following theorem is the counterpart of Corollary 7.3.5 in Dembo and Zeitouni (1998). It is a

corollary of Lemma 4.3.

Theorem 4.2. Suppose that Assumptions A and B hold, � is a separable metric space and the

constraint set A0 is convex. Then, for all f in Cb(�k), we have

h�n
Y k jA�

, f i ! h�k

� , f i,

for n!1 followed by �! 0, where �� is the common absolutely continuous part of the

elements of M (see Lemma 4.1).

Theorem 4.2 improves Dembo and Zeitouni’s Corollary 7.3.5 in two directions:

(1) The constraint sets A� can be based on functions with possibly infinite exponential

moments, for instance

A� ¼ f‘ 2 Q; jh‘, ui � 1j < �g with u 2 L
:

Such functions u may grow quite fast.

(2) It has been previously remarked that Assumptions A and B do not require an

underlying LLN. For an illustration of why this is useful, see Section 4.4 below and

in particular Remark 4.5.
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Remark 4.4. In the case k ¼ 1, the convergence even holds for all f 2 M
, that is,

h�n
Y jA�

, f i ! h��, f i for f 2 M
:

However, this result relies on a finer estimate than Lemma 4.3 below. The estimate and the

convergence theorem can be found in Najim (2001, Lemma 2.10 and Theorem 2.11).

The following lemma is the counterpart of Dembo and Zeitouni’s (1998) Theorem 7.3.3.

Lemma 4.3. Suppose that Assumptions A and B hold. Then M is a non-empty � (Q, L
)-

compact subset of Q and, for any open measurable subset ˆ 2 EQ with M� ˆ, we have

lim sup
�!0

lim sup
n!1

1

n
log �n(LY

n =2 ˆjLY
n 2 A�) , 0:

Proof. Standard arguments yield M 6¼ ˘ and M¼ A0 \ fI < I(A0)g. As I is a good rate

function, fI < I(A0)g is a compact set. A0 being closed (see Assumption A), it follows that

M is compact. As (A�)�.0 is a nested family of measurable sets, we obtain

lim sup
�!0

lim sup
n!1

1

n
log �n(L y

n =2 ˆjLY
n 2 A�)

< lim
�!0

lim sup
n!1

1

n
log Qn(ˆc \ A�)� lim

�!0
lim inf

n!1

1

n
log Qn(A�): (4:4)

With the help of the upper and lower bounds of Theorem 3.2, the same argument as in

Dembo and Zeitouni’s (1998) – Sanov’s upper bound – yields

lim
�!0

lim sup
n!1

1

n
log Qn(ˆc \ A�) , �I(A0): (4:5)

On the other hand, by Sanov’s lower bound, we obtain, for all � . 0,

lim inf
n!1

1

n
log Qn(A�) > �inffI(‘ ), ‘ 2 A��g: (4:6)

Combining these arguments with (4.3), we obtain

lim
�!0

lim inf
n!1

1

n
log Qn(A�) > �I(A0):

The proof of the lemma is completed by using this inequality together with (4.5) in (4.4)

Proof of Theorem 4.2. As A0 is assumed to be convex, by Lemma 4.1, M is decomposed as

�� þ S.

Let the function f (x1, . . . , xk) ¼
Qk

i¼1 f i(xi) be fixed, where each f i 2 Cb(�). By the

definition of �n
Y k jA�

(see (4.2)),

d�n
Y k jA�

d�k
(y1, . . . , yk) ¼

ð
� n� k

1A�, n
(y1, . . . , yn)

Qn(A�)
d�(ykþ1) � � � d�(yn), (4:7)
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where A�,n ¼ fLY
n 2 A�g. Consider

ˆ(�) ¼
\k

i¼1

f‘ 2 Q; jh‘, f ii � h��, f iij , �g

and let ˆn(�) ¼ fLY
n 2 ˆ(�)g. Then ˆ(�) satisifies the assumptions of Lemma 4.3, since it is

open measurable and M� ˆ(�). Let us prove this inclusion. if ‘ 2M, then ‘ ¼ �� þ ‘ s by

the assumption on M. As f i 2 M
 for 1 < i < k, h‘s, f ii ¼ 0 by Proposition 2.4. Hence

h‘, f ii ¼ h��, f ii and M� (�). Therefore,

lim
�!0

lim
n!1

�n(LY
N =2 ˆjLY

n 2 A�) ¼ 0

by Lemma 4.3. The rest of the proof follows step by step the proof of Dembo and Zeitouni’s

(1998) Corollary 7.3.5. h

4.4. Csiszár’s example revisited

Within the scope of Section 3.4, we are interested in the limiting behaviour of �n
Y jA�(x)

where

A�(x) ¼ f‘ 2 Q; jh‘, ui � xj < �g with u(y) ¼ y,

A0(x) ¼ f‘ 2 Q; h‘, ui ¼ xg:

The sets of constraints are

fLY
n 2 A�(x)g ¼ (y1, . . . , yn);





 1

n

Xn

1

yi � x





 < �

( )

and �n
Y jA�(x)

represents the law of Y1 under the constraint that the mean n�1�n
1 Yi is close to x.

Let us denote by Mx the corresponding set of minimizers of (3.5).

Propostion 4.4. For any x > x�, ‘ belongs to Mx if and only if

(i) ‘ a ¼ �� with ��(dy) ¼ e y�¸(1)�(dy),

(ii) h‘ s, ui ¼ x� x�, where u(y) ¼ y, y > 0,

(iii) supfh‘ s, f i; f ,
Ð

[0,1)
e f d� ,1g ¼ h‘ s, ui.

In particular, for any x . x�, there are infinitely many elements in Mx.

Proof. A careful look will convince the reader that the equivalence has already been proved

in Proposition 3.9.

Let us show that there are infinitely many minimizers when x . x�. Because of item (iii)

of the proposition, it is sufficient to prove that the gauge function p(g) ¼ inffº . 0;

g=º 2 D�g of D� ¼ f f ;
Ð

[0,1)
e f d� ,1g is not Gâteaux-differentiable at u (for this

argument see, for instance, Giles 1982, p. 123). This means that there exists f 2 L
 such

that
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lim
t!0, t.0

p(uþ tf )� p(u)

t
6¼ lim

t!0, t,0

p(uþ tf )� p(u)

t
: (4:8)

Consider

f (y) ¼ ay if y 2 [n>0[2n, 2nþ 1),

�by if y 2 [n>0[2nþ 1, 2nþ 2),

�

where a 6¼ b, a . 0, b . 0. A straightforward computation yields

lim
t!0, t.0

p(uþ tf )� p(u)

t
¼ a, lim

t!0, t,0

p(uþ tf )� p(u)

t
¼ �b:

Hence (4.8) holds and the proposition is proved. h

For an alternative proof and further details, see Léonard (2002, Section 6).

Applying Theorem 4.2 to �n
Y jA�(x)

, we see that for all x . x� such that Mx ¼ �� þ Sx,

and for any f 2 Cb([0, 1)), h�n
Y jA�(x)

, f i tends to h��, f i, as n!1 followed by �! 0.

Moreover, the convergence of h�n
Y jA�(x)

, f i to h��, f i even holds for f 2 M
([0, 1)) (see

Remark 4.4).

Remark 4.5. In this example, one can easily check that

lim
n!1

�n

�fLY
n 2 A�(x�)g ¼ 1 for � . 0,

lim
n!1

�n

�fLY
n 2 A�(x�)g ¼ 0 for x . x� and � 2 (0, x� x�):

Hence (4.1), which enforces an LLN under ��, is not satisfied when x . x�, whereas the

convergence of �n
Y jA�(x)

towards �� still occurs. Note that the approach developed by Csiszár

(1984), which is based on convergence in information, also does not rely on such a restrictive

LLN assumption.
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