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I. INTRODUCTION 

Besides the classical approach to Selberg's zeta function for cofi-
nite Fuchsian groups [S] through the trace formula [V] there has 
been developed recently another one based on the thermodynamic 
formalism [R2] applied to the dynamical zeta function of Smale 
and Ruelle [F] which for geodesic flows on surfaces of constant 
negative curvature (c.n.c.) is closely related to Selberg's function 
for the corresponding Fuchsian group [Sm, Rl]. This latter ap­
proach however has been worked out up to now only for cocom-
pact groups. 

In this announcement we discuss the first example of a cofinite, 
noncocompact Fuchsian group where the aforementioned ther­
modynamic formalism approach works also, namely the modular 
group PSL(2, Z). The most remarkable fact with this group is 
that the whole formalism can be made rather explicit contrary to 
the general case where many of the constructions used are rather 
difficult to come by. The reason for this is a quite simple con­
struction of symbolic dynamics for geodesic flows on surfaces of 
c.n.c. due to Bowen and Series [BS]. Instead of an usually only 
inductively defined Markov partition [F] their symbolic dynamics 
is based on a piecewise analytic Markov map of the limit set of 
the Fuchsian group, determined by the group generators. Through 
this symbolic dynamics the Smale-Ruelle function for the flow gets 
transformed into a generating function for partition functions for 
the B-S map to which the transfer operator method of statisti­
cal mechanics applies [Ml, Rl]. Since for cocompact groups the 
B-S maps are expanding [BS] their transfer operators can be cho­
sen as nuclear operators [G], and the Selberg function finally gets 
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expressed in terms of Fredholm determinants of these operators 
[Po2]. 

In trying to extend this approach to general cofinite groups one 
faces two problems: the B-S map is not expanding for a nonco-
compact group and hence its transfer operators are not nuclear 
[M3]. Furthermore, in this case this map has infinitely many 
branches leading to a more involved discussion of the analytic de­
pendence of its transfer operators on possible parameters. For 
the group PSL(2, Z) both these problems can be resolved. To 
achieve this we use the remarkable results of Series [Se], respec­
tively Adler and Flatto [AF], showing that for the modular surface 
the nonexpanding B-S map can indeed be replaced by an expand­
ing map, induced from the former one on a certain subset of the 
limit set. Quite surprisingly, this new map turns out to be the 
classical continued fraction map TGx = x~l mod 1 on the unit in­
terval, whose importance for the modular surface was recognized 
already by Artin in [A]. This map still has infinitely many mono­
tone branches so that the analytic properties of its transfer oper­
ators in exterior parameters are more involved. They have been 
worked out only recently in [M2]. 

The thermodynamic formalism then leads to a rather explicit 
representation of the Smale-Ruelle function and hence also of the 
Selberg function for PSL(2, Z) in terms of Fredholm determi­
nants of transfer operators of the map TG. Finally, combining our 
results with classical ones for the Selberg function derived from the 
trace formula suggests also a seemingly new formulation of Rie-
mann's hypothesis on his zeta function in terms of the transfer 
operators of TG. 

II. TRANSFER OPERATORS AND RUELLE'S ZETA 
FUNCTION FOR THE GAUSS MAP 

The thermodynamic formalism for the Gauss map TGx = 
x~l mod 1 on the unit interval has been discussed recently in [M2]. 
In this formalism, a central role is played by the partition func­
tions Zn(TG, A) defined for n e N through the n-periodic points 
x e Fix TG of TG by the formula 

Zn(TG>A)= E e x p £ > ( r * % ) , 
JcGFix T% k=0 

where A = As(x) = -s\og\TG(x)\ = s log*2 with s a complex 
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parameter known in physics as "inverse temperature." Obviously 
| Fix Tg | = oo for all n since the «-periodic points of TG are 
just all irrationals x in the unit interval with «-periodic contin­
ued fraction expansion. Hence the partition functions Zn(TG, As) 
are defined only for Res > \ . The transfer matrix was invented in 
statistical mechanics to calculate partition functions similar to the 
ones introduced above [Ml], by transforming the combinatorial 
problem into an algebraic one. Under the name transfer opera­
tor it became a standard tool in the ergodic theory of dynamical 
systems [R2]. To apply this technique here consider the follow­
ing operators Ls : Aœ(D) -• A^D) acting on the 2?-space of 
functions holomorphic on the disc J5 = { z : | z - l | < § } and 
continuous on D : 

<» vw=Ê(è)M^)' 
n=\ x / x ' 

The infinite sum reflects the infinite monotone branches of the 
map TG with inverses (n + x)~l, so that also Ls is well defined 
only for complex values of s with Res > \ . Using essentially 
only Grothendieck's theory of nuclear operators [G] one shows 
[M2] 
Proposition 1. For Res > \ the operators Ls are nuclear of order 
zero and fulfill the trace formulas 

Zn(TG, As) = traceL* - trace(-L5+1)" . 
Consider next for k e N the functions 

oo n 

i:k(z,s) = cxp^2TZnk(TG,As) 

introduced originally for k = 1 in [Rl] and well defined for 
\z\ < exp-(kP(s)) with P(s) = l i m ^ I l o g Z , ^ , ^ ) the 
topological pressure of As. We get, applying Proposition 1 and 
Grothendieck's Fredholm theory [G], 

Corollary 1. The functions Çk(z, s) can be expressed for Res > \ 
as Çk(z, s) = det(l-z(-L5+1)fc)/det(l-zZ^) and extend for such 
s as meromorphic functions into the entire z-plane. The functions 
Ck{s) := Cfc(l, s) are meromorphic in the half plane Res > \ for 
all JfceN. 

That the functions £k(s) of Corollary 1 extend as meromorphic 
functions even into the entire s-plane follows from the next result 
proved in [M2]. 
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Theorem 1. The map s -• Ls extends as a meromorphic function 
into the entire s-plane with values nuclear operators of order zero 
in A^D). It has simple poles for s = sk = (1 - k)/2, k = 
0 , 1 , . . . with residues the rank 1 operators Nkf(z) = ^ / ( / c ) (0) 
in A^D). The Fredholm determinants det(l±L") extend as 
meromorphic functions into the entire s-plane with {possibly re­
movable) singularities at the above sk values. 

III. SELBERG'S ZETA FUNCTION FOR PSL(2, Z) 

The Selberg function Z(s) for a general cofinite Fuchsian group 
T [S] has a simple interpretation in terms of the dynamical Smale-
Ruelle zeta function ÇSR(s) for the geodesic flow <f>t on the surface 
of c.n.c. defined by T [Sm, Rl]: 

oo oo 

(2) z(s)=n cSR(s+/c)-1=n IK1 - *~{s+km). 
A:=0 7 A:=0 

where the product is over the length spectrum L{(j)t) of (j>t consist­
ing of all periodic orbits y with prime period l{y). The products 
are known to converge for Res > 1 [Rl]. To discuss this function 
for the group T = PSL(2, Z) we use the results in [Se], respec­
tively [AF], on the symbolic dynamics of the geodesic flow <j>t on 
the modular surface. It was shown there that (/>t can be described 
by a special flow built over a natural extension TG of the Gauss 
map with fG(x, y, e) = (T^x, (y + I^])"1, - e ) , e = ± l , (x,y) 
in the unit square, from which the length spectrum L{(j)t) can be 
derived as [Pol] 
(3) 

I k=0 

[w] periodic orbit of fG of prime period 2r, r e N > 

with ~AX the special case s = 1 of the function ~As(w) = As(x) for 
w = (je, y, e). By a standard chain of arguments [P] the function 
CSR{s) can be written as 

oo n 

C s^) = e x p ^ — Zn{fG,1s) 
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with Zn(TG, As) the partition functions for TG and As. A simple 
calculation however shows that Zn(fG, As) = 0 for n odd and 
Zn(fG,As) = 2Zn(TG,As) for n even. Hence the Smale-Ruelle 
zeta function £SR(s) for <f>t is just the function Ç2(s) as defined 
for TG in Corollary 1. Combining formulas 2 and 3 then proves 
our main result: 

Theorem 2. The Selberg zeta function Z(s) for the modular group 
PSL(2, Z) can be written as Z(s) = det(l-L s)det(l+L5) with Ls 

the transfer operator of the Gauss map TG. Z(s) is meromorphic 
in the entire s-plane with (possibly removable) singularities at the 
points sk = (1 - k)/2, fc = 0 , l , 2 , . . . . 

The nontrivial zeros of Z(s) are hence given by those s-values 
for which Ls has A = 1 or A = - 1 as an eigenvalue. The trace 
formula approach shows [V] that these zeros are either j times the 
nontrivial zeros of Riemann's zeta function or they determine via 
the formula s = j + ir the eigenvalues p = \ + r2 of the Laplacian 
-A on the modular surface. The value s = 1 is such a zero since 
det( 1 - Lj ) = 0, corresponding to the eigenvalue p = 0 of - A . 
One can then ask if it is generally true that all the eigenvalues of 
-A are determined by the factor det(l—Ls) whereas the nontrivial 
zeros of Riemann's zeta function are determined by det(l + Ls). 
This would mean that the factorization in Theorem 2 corresponds 
to the one found for cocompact Fuchsian groups in [Sa]. In this 
case the Riemann Hypothesis would be equivalent to the opera­
tor Ls having eigenvalue X = - 1 only for ^-values on the line 
R e s = i . 
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