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A hyponormal operator is a bounded operator T on a Hubert 
space %f such that T*T> TT*. This rather innocent definition 
was introduced by Paul Halmos [11] in 1950 and generalizes the 
concept of a normal operator (where T*T = TT*). Why not 
consider the condition T*T < TT*, you ask? In fact, people 
do; such operators are called cohyponormaL (Needless to say, the 
two theories are related, though one is not a trivial adaptation 
of the other since many properties do not travel well when taking 
adjoints.) The important thing is that there is a prominent example 
of a hyponormal operator, the unilateral shift. If I2 is the Hubert 
space of square summable sequences and T is defined on I2 by 
T(a0, ax , . . . ) = (0, a0, a{, . . . ) , then T is called the unilateral 
shift and is the most basic of hyponormal operators. 

Normal operators are completely understood. Indeed, it is pos­
sible to define a complete set of unitary invariants for normal op­
erators; equivalently, it is possible to give a model for an arbi­
trary normal operator. Specifically, in the case that the underly­
ing Hubert space %? is separable, given any compactly supported 
regular Borel measure fi on the complex plane and a Borel func­
tion m defined on C with values in {oo, 0 , 1 , 2 , . . . } such that 
m = 0 off the support of fi, there is a canonically associated nor­
mal operator N m and each normal operator is unitarily equiva­
lent to one of these models. That is, for each normal operator N 
there is a fi, such a function m, and a unitary operator U with 
N= J7*A^ mU. Moreover, two such models N and Nv rt,are 
unitarily equivalent if and only if [fi] = [u] (that is, fi and v are 
equivalent measures in the sense that they have the same sets of 
measure 0) and m — n a.e. [fi]. The details of this can be found 
in [10], §IX.10. In the case of a nonseparable Hubert space the 
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theory exists but the measure theory becomes more complicated. 
This is the subject of the last chapter of [12]. 

In this way, any question concerning normal operators can be 
reduced to a question concerning measure theory from which an 
answer can usually be derived. What about operators that are not 
normal? The general problem is impossible. In fact, even if the 
Hubert space is finite dimensional, the answer is unknown. That 
is, what are necessary and sufficient conditions for two matrices to 
be unitarily equivalent? 

As it turns out the unilateral shift is a well understood nonnor-
mal operator; it is arguably the best understood nonnormal op­
erator on an infinite dimensional space. For example, in [3] the 
invariant subspaces of the shift are completely determined. (An in­
variant subspace for an operator T is a closed subspace Jf of %? 
such that TJ£ c Jf.) This paper, a milestone in the development 
of operator theory, was the first instance where complete informa­
tion about the invariant subspaces of a nonnormal operator was 
obtained. In addition, the method of proof involved the use of 
significant results about analytic functions. The consequences of 
these two facts are still prevalent in operator theory today. 

Success breeds success. Paul Halmos began a strategic attack on 
operator theory by extracting two properties of the shift in [11]. 
One was the definition of hyponormal operators and the other the 
idea of a subnormal operator. A subnormal operator is one that 
has a normal extension; every subnormal operator is hyponormal. 
Sometimes success also breeds other things and there is a plethora 
of definitions of classes of operators where a prefix or suffix is 
attached to the word normal. Some of these definitions are useful 
and important and others lack the necessary stock of examples 
to guarantee their viability. In this review we will concentrate 
on hyponormal operators, with only occasional references to the 
theory of subnormal operators. 

Any operator T can be written as T = N 0 Tl9 where N is 
a normal operator and Tx is an operator with no normal direct 
summand. Such an operator Tx is said to be pure; T is a pure 
operator if no such nontrivial direct sum decomposition can be 
found. Many, but not all, questions concerning hyponormal oper­
ators can be reduced to the study of pure hyponormal operators. 
So throughout this review it will be assumed that T is pure. 

Write T in its Cartesian decomposition. T = X+iY, where X 
and Y are self-adjoint operators. One of the first important results 
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in the theory of hyponormal operators, due to C. R. Putnam, is 
the fact that if T is a pure hyponormal operator, then its real and 
imaginary parts, X and Y, must be absolutely continuous self-
adjoint operators [17]. That is, the spectral measures for X and Y 
must be absolutely continuous with respect to Lebesgue measure on 
the real line. Thus the Spectral Theorem for self-adjoint operators 
can be applied to X, and this operator can be represented as a 
multiplication operator on L2[a, b] for some interval in R. The 
operator Y also has such a representation, but on a different L2 

space. Can Y be represented on the same space L2[a, b] in a 
way that is intimately connected with the representation of X ? 

Indeed, a result of Kato [14], though it is not directly related to 
hyponormal operators, implies that this can be done. About the 
same time, many authors began investigating hyponormal opera­
tors from this perspective [15, 19, 21, 22]. 

Note that the self-commutator of T, [T*, T] = T*T - TT*, 
can be expressed in terms of its real and imaginary parts X and 
Y : [T*T] = 2i[X, Y] = 2i(XY-YX). If T is a pure hyponormal 
operator and the self-commutator of T is a trace class operator, 
then when X is represented as a multiplication operator, the oper­
ator Y appears as a singular integral operator in a more tractable 
form than the general case [15, 19, 21, 22]. 

For a pair of self-adjoint operators X and Y, say that X and 
Y almost commute if their commutator, [X, Y] = XY - YX, is 
a trace class operator. Helton and Howe [13] began a systematic 
study of almost commuting pairs of self-adjoint operators by in­
troducing the following tracial bilinear form. Let ^(R2) be the 
collection of all polynomials in two variables with complex coeffi­
cients. If p(x9 y) and q(x9 y) are two such polynomials, define 

(p,q) = tmce(i[p(X9Y),q(X9Y)]). 

The fact that X and Y almost commute implies that this is well 
defined. They showed that there is a regular Borel signed measure 
ix on R2 having compact support such that 

<J>,Q)= J{P ,q)dv> 

where 

J[P,q)~ dxdy dxdy' 
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Later Joel Pincus [15] showed that this measure // must be ab­
solutely continuous with respect to planar Lebesgue measure X, 
and the Radon-Nikodym derivative, g = 2n dju/dÀ, is precisely 
the principal function he had studied in conjunction with almost 
commuting pairs. 

This was the starting point for a sequence of papers by Carey 
and Pincus [6-9]. In particular, in [7] they associate with a hy-
ponormal operator an operator-valued function called the mosaic 
of T. This mosaic turns out to be a complete unitary invariant 
for pure hyponormal operators with trace class self-commutator. 
They also showed that for any mosaic the corresponding hyponor­
mal operator exists, establishing a model for the operators. When 
the operator is subnormal, the mosaic is projection-valued [9]. 

The reader should be aware that restricting attention to hyponor­
mal operators with trace class self-commutators is still a very gen­
eral situation with many interesting examples. That this is the case 
is underlined by another of the milestones in the development of 
this theory. Say that an operator T is m-multicyclic if there are 
m vectors g{, ... , gm in <%* such that <%* is the closed linear 
span of {u(T)gj, : 1 < j < m and u is a rational function with 
poles off a{T)} and no set of fewer than m vectors can be found 
to act as generators in this sense. Berger and Shaw [1,2] showed 
that if T is an m-multicyclic hyponormal operator, then T has 
a trace class self-commutator and, moreover, 

trace[r*, T] < — Area(a(r)). 
71 

Thus the model using singular integral operators applies to all m-
multicyclic hyponormal operators. 

In addition to its importance in establishing the relevance of 
studying hyponormal operators with trace class self-commutators, 
the Berger-Shaw theorem has deep importance on its own. As 
one example of this importance, it can be used to give a simple 
proof of Putnam's inequality [18]: For any hyponormal operator 
T, \\T*T- TT*\\ < (l/7r)Area((7(r)). Here is the proof. Fix 
a vector ƒ with ||/|| < 1 and let X = closed linear span of 
{u(T)f : u a rational function with poles off o{T)}. If T{ = 
T\3£\ then T{ is a 1-multicyclic hyponormal operator. By the 
Berger-Shaw theorem and the fact that \\Tff\\ < \\T*f\\, we get 
that ([T\T]f,f) = \\Tff - | | r / | | 2 < \\Tjf - | |r;/ | |2 = 
<[r;, r j , ƒ , ƒ> < tr[r; , r j < l A r e a ^ ) ) < iArea(a(r)). 

file:////Tff
file:////Tjf
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Since ƒ was chosen arbitrarily among the unit vectors, the result 
follows. 

Note that Putnam's inequality implies that if the spectrum of a 
hyponormal operator has zero area, then it must be normal. 

This seems like a good place to mention another of the most 
significant results connected with this subject. In [5] Scott Brown 
proved that if T is a hyponormal operator and C(o(T)) ^ 
R{a{T)), the uniform closure of the rational functions with poles 
off a{T)9 then T has a nontrivial invariant subspace. Of course 
functions in R{a{T)) are analytic on the interior of a(T), so any 
hyponormal operator whose spectrum has nonvoid interior satis­
fies the hypothesis of Brown's theorem. On the other hand the 
Hartogs-Rosenthal theorem implies that if a{T) has zero area, 
then R{a{T)) = C(a(T))\ but as mentioned above, such hy­
ponormal operators are normal and the Spectral Theorem implies 
that normal operators have invariant subspaces. There are, how­
ever, examples of pure hyponormal operators such that R(o{T)) = 
C((j(T)). So Brown's theorem does not establish the existence of 
invariant subspaces for the arbitrary hyponormal operator, but it 
comes very close and does cover all but the more pathological ex­
amples. This might be contrasted with the situation for subnormal 
operators, where Brown [4] has shown that every such operator 
has a nontrivial invariant subspace. (Also see [20] for a remark­
ably easy proof that can be presented in an elementary course in 
functional analysis.) 

One of the principal tools used by Brown in his proof of the ex­
istence of invariant subspaces for hyponormal operators is a sim­
ilarity model developed by one of the authors of the monograph 
presently under review [16]. Later both of the present authors ob­
tained a complete unitary invariant for hyponormal operators and 
a consequent model. This invariant is a certain type of operator-
valued distribution defined on the plane, and therein lies the rub. 
This invariant is very difficult to calculate for examples and certain 
fundamental questions about hyponormal operators cannot be an­
swered using the model. For example, how does one distinguish 
the subnormal operators using the Martin-Putinar model? Can 
the model be used to recapture Brown's theorem? This is not a 
criticism of the result, but rather an indication that much work 
remains. Perhaps time will produce techniques for squeezing an­
swers from this operator-valued distribution. 
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A similar comment can be made about the Carey-Pincus mo­
saic for hyponormal operators with trace class self-commutators. 
As stated before, the subnormal operators can be distinguished 
here but it is difficult to compute this invariant for some common 
examples. 

On another front, Xia [23, 24] has produced a model for sub­
normal operators which he has applied to the solution of a problem 
concerning these operators. 

So from a time when there were no real models for hyponormal 
operators, we have come upon a plethora of sets of complete uni­
tary invariants. Each of these models has certain virtues, but no 
one has ever shown relationships between them. 

It is probably the case that the present monograph is the result 
of the authors' work on their model. Indeed, the book gives a 
self-contained (except for the analysis background) treatment of 
their theorem, as well as the other results alluded to in this review. 
In fact, this book contains all the major results on hyponormal 
operators. 

Students will, I believe, have difficulties reading this tract even if 
the word "student" is given its most liberal interpretation. To begin 
with, any aspiring reader will have to have a strong background in 
classical analysis. Moreover, the exposition here is somewhat raw 
and proofs often skip steps that are not obvious. 

But let's be clear on one point. This book deserves a place on 
the shelf of every practicing operator theorist. In fact, it sits on my 
special shelf of books kept close to my desk and, as a consequence 
of this review, also resides in my library at home. Clearly this 
book defines the area in its present state. 
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