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The book targeted by this review is truly a landmark, project­
ing barrelledness as the major force which disciplines the general 
theory of locally convex topological vector spaces (lctvs); it is the 
definitive study of strong and weak barrelledness structure the­
ory, with a novel choice of applications (Chapters 10-12); it is a 
unique assimilation of half a century's scholarship, comprehensive, 
coherent, current, with a marvelous collection of open problems 
(Chapter 13). In his fanciful flight over an area he has roosted 
in for two decades, the reviewer finds the book the monument 
which most powerfully stimulates and facilitates fresh contribu­
tions (see below), contributions particularly urgent in view of the 
fertile open problems and certain creatively correctable mistakes 
(a modest price for such timeliness). A clearer bird's-eye view of 
strong barrelledness unfolds (see Figures 1-4). 

The recent demise of the beloved patriarch, Prof. Dr. G. Köthe, 
recalls the historically grand German tradition in topological vec­
tor spaces (tvs). Now Spain has emerged a leader with the advent 
of Prof. M. Valdivia and his prolific followers, including the au­
thors P. Pérez Carreras and J. Bonet. Unfortunately, some of 
their important results appear in Spanish publications not widely 
available. Fortunately, the book under review redresses this sit­
uation beautifully, transporting to the New World a cargo richer 
than the plunder of conquistadors. As in a Goya painting, the 
book's subject is robust and beguilingly composed. Although some 
knowledge of tvs's is requisite, to most in the area the book is nec­
essary and sufficient. Chapters 10, 11, and 12, respectively, make 
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the case that those in C(X) spaces, tensor products, and infinite 
holomorphy may also profit from the beautiful structure theory of 
Chapters 1-9, where a cohesive account of strong and weak bar-
relledness conditions is given, including a parallel development 
of quasibarrelled conditions, with copious relevant material on 
(trans)separability and minimality; Baire, Mackey, Fréchet, and 
Banach spaces; B- and incomplete spaces; (ultra)bornological 
spaces; (DF)- and (LF)-spaces; quojections; closed graph theorems; 
etc. Obversely, structure theorists have a nicely segued introduc­
tion to applications in Chapters 10-12. The earlier informed re­
marks of a more applications-oriented reviewer [3] are weighted 
heavily in the book's favor. The tables, the index, and the lists of 
symbols and abbreviations all enhance the unprecedented accessi­
bility of the latest and best information distilled from the reference 
section's more than 500 articles and books. 

There are three fundamental principles of functional analysis. 
One of them, the Hahn-Banach theorem, holds in any lctvs. The 
other two are supported in Fréchet spaces (complete metrizable 
lctvs) by the Baire category theorem. But they also hold in (LF)-
spaces, a larger applications-rich class of lctvs, though proper (LF)-
spaces are never Baire. Ultimately, via a form of the Hahn-Banach 
theorem, Bourbaki and Dieudonné defined and characterized bar­
relled ("tonnelé") spaces as the largest class of lctvs in which the 
fundamental Uniform Boundedness Principle holds, and A. P. and 
W. J. Robertson, Ptâk, and Mahowald showed it is also the largest 
class for which the fundamental Open Mapping/Closed Graph 
Theorem holds vis-à-vis Fréchet spaces. Clearly, this is a "fun­
damentally" important class. 

A Hausdorff lctvs is barrelled if every barrel (closed, absolutely 
convex, absorbing set) is a neighborhood of 0. From the Bipolar 
Theorem, E is barrelled if and only if, given any set B of con­
tinuous linear functionate ( B c E' ) such that, for each x € E, 
the scalar set {f(x) : ƒ e B} is bounded, there exists a neigh­
borhood U of 0 in E such that {ƒ(*) : x e U, ƒ € B} is 
bounded. That is, pointwise boundedness implies uniform bound­
edness (equicontinuity). Thus, the pointwise limit of a sequence in 
E' is also in E', a basic property which, by [4], characterizes bar-
relledness in metrizable lctvs's. In general, the property is strictly 
weaker than ^°°-barrelledness, which is strictly weaker than bar-
relledness. (AHausdorff locally convex space E is t°°-barrelled if 
every countable pointwise bounded set in E' is equicontinuous.) 
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A number of such "weak barrelledness conditions" are discussed 
in Chapter 8, and the study of five conditions between Baireness 
and barrelledness occupies Chapter 9. An imperative for the study 
of weak and strong barrelledness conditions is the need for "good" 
permanence properties, i.e., for classes of spaces with desirable 
defining properties preserved under the formation of quotients, 
Cartesian products, countable-codimensional subspaces, etc. As 
amply demonstrated in the book, Baire and Fréchet spaces have 
"bad" (i.e., few) permanence properties, while barrelled spaces are 
notoriously "good." All of the strong barrelledness conditions of 
Chapter 9 exhibit excellent permanence properties, and to varying 
extents this is the case for the weak barrelledness conditions in 
Chapter 8. A rich array of distinguishing examples is provided. 

A barrelled space is [quasi-Baire (QB)] (Baire-like (BL)) if it 
is not the union of an increasing sequence of nowhere dense [sub-
spaces] ( absolutely convex sets ). Clearly, BL =*• QB =>• bar­
relled, and by Amemiya-Kömura[l], [metrizable A barrelled] =*• 
BL. So, by [1] and [4]: Every metrizable t°°-barrelled space is not 
only barrelled but also BL. The formal study of degrees of Baire­
ness and barrelledness often provides, as does barrelledness itself, 
the precise class in which a theorem or technique is valid, and 
good permanence properties extend applicability. For example, 
Theorem 4.7.1 of [9], predating BL spaces [1, 18], is proved sepa­
rately for E either a Baire space or a metrizable barrelled space, 
whereas the natural general setting is for £ aBL space. Moreover, 
large products, say, of either locally convex (lc) Baire or metriz­
able barrelled spaces need not be of the same type, but are still 
BL, since BL spaces are permanent under products [18]. Let us 
add to the sizable list of permanence properties enjoyed by £°°-
barrelled spaces and see more of their interaction with QB and BL 
spaces. Corollary 8.2.20 states: Every separable £°°-barrelled space 
is barrelled. This interesting result is uncredited, as is Proposition 
9.1.5, which should read: If F is a dense £°°-barrelled subspace 
of a BL space E, then F is BL ( Theorem 1.1 of [36]). We may 
replace "BL" by "QB" (same proof) or by "barrelled" (easy proof). 
The "barrelled" version of 9.1.5 is crucial in [19,34]. Propositions 
8.2.31 and 8.2.33 tell us that: The class of t°°-barrelled spaces 
is stable {closed) under the formation of separated quotients, di­
rect sums, inductive limits, completions, products, and countable-
codimensional subspaces. We add [20] the answer to Question 
13.8.16: The t°°-barrelled spaces affirm the three-space problem; 
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i.e., if E is a Hausdorjf locally convex space with a closed subspace 
M such that M and E/M are both t°°-barrelled, then so also is 
E [the third space]. The proof is surprisingly simple. 

A stimulating Notes and Remarks section ends each chapter 
and assigns credit, of particular importance in a book which so 
greatly reduces the need for original sources. The authors in­
sightfully credit Eidelheit [7] for proving in 1936, long before its 
unattributed appearance in Köthe's Volume I [11], the basic result 
that: Every non-normable Fréchet space has a quotient isomorphic 
to co(= KN). They show (page 331) that the reviewer was not the 
first to discover noncomplete metrizable (LF)-spaces; that other 
(4.7.1(i), 4.6.6) ideas of his [16,36] were first Köthe's [11] and S. 
Dierolf s [5]. The reviewer welcomes such enlightenment with the 
hope of forgiveness where needed. Forgiveness may, on occasion, 
be extended as well to the authors. Proposition 4.5.6 on barrelled 
countable enlargement (BCE) is an important uncredited result 
of Robertson, Tweddle, and Yeomans [17]. Proposition 4.5.22, 
the Saxon-Levin result [30] that: Every algebraic complement of a 
closed countable-codimensional subspace of a barrelled space is a 
topological complement with its strongest locally convex topology, 
is likewise unattributed, perhaps because it is now well known. 
Related is one of Saxon's first strong barrelledness results: A bar­
relled space is QB if and only if it does not contain a complemented 
copy of <p [ = AT(N), a denumerable-dimensional vector space with 
its strongest locally convex topology]. This result is presented as 
Propositions 8.8.3 and 9.1.12, and credited both times to "Bonet, 
Perez Carreras, (5)", with no regard to its prior publication (sans 
proof) on both pages 88 and 98 of [18]. The original, simple 
proof [32] has had limited circulation since 1980 in a preprint of 
[32], since 1970 in mimeographed notes of Saxon's University of 
Florida seminar. But the idea for this easy proof goes back at least 
as far as Karlin's 1948 paper ([10], Theorem 8, Sufficiency), and 
seems less contrived than the authors' proof. (To simplify the au­
thors' proof, page 316, one need only observe that the subspace 
n^Li vn of F is closed and denumerable-codimensional, so that 
the above Saxon-Levin result applies.) 

A "major highlight" [3], the weighty Chapter 8 triply confuses 
(LF)-spaces. The definition (pages 2 and 3) does not require the 
inductive sequence of Fréchet spaces to cover the entire space 
E. This would mean that every vector space with its strongest lc 
topology is an (LF)-space (take each En - {0}), denying the 
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Köthe-Grothendieck Open Mapping/Closed Graph Theorems 
(1.2.20 and 8.4.11), for example. Next consider Hausdorffness: if 
there exists a non-Hausdorff (LF)-space, then Proposition 8.4.10 
and the Köthe-Grothendieck Open Mapping Theorem 8.4.11 fail, 
as does the proof of 8.4.6 (cf. [33]); a mapping has closed graph 
only when the range is Hausdorff. Although it is not until §8.8 
that the authors declare "All (LF)-spaces here are assumed to be 
Hausdorff," the most practical recourse is to assume Hausdorff­
ness throughout, as did the theorems' original authors. Be it here 
defined that a Hausdorff lctvs (E, r) is a [proper] (LF)-space if 
there exists a [properly] increasing sequence of Fréchet spaces 
(En,rn) such that (i) E = \JZiEn> (ü) e a c h (E

n>
 Tn) domi­

nates (En, rn+i), and (iii) r is the finest Hausdorff lc topology for 
which each (En, xn) dominates (En, T) . (One lctvs F (strictly) 
dominates another, G, if F and G coincide as vector spaces and 
the topology of F is (strictly) finer than that of G.) Obviously, 
in this context the open problem 13.8.12 "Find conditions under 
which an (LF)-space is Hausdorff' would need rephrasing. The 
third confusion concerns properness of (LF)-spaces: [31-33] re­
quired (LF)-spaces to be proper, and failure to account for this 
makes Propositions 8.6.15 and 8.8.13 false. 

Proposition 8.8.10 holds only if "infinite-dimensional" is deleted 
(cf. [32, 33]), but still applies in the proof of 8.8.12, the most gen­
eral version of which is [21-23, 32]: Every countable-codimensional 
subspace of an infinite-dimensional [non-normable] ( proper ) metriz-
able (LF)-space has an infinite-dimensional ( separable ) Fréchet 
quotient [isomorphic to co(= KN)]. This also extends Eidelheit's 
initial result [7] and the authors' [12], in answer to Question 13.2.2. 
Valdivia's Lemma 6.3.1 and proof are creatively correctable [29]. 

Whether every infinite-dimensional Banach (Fréchet) space has 
a properly separable (Hausdorff with separable dense proper sub-
space [14]) quotient is a venerable still-open question from Ba-
nach's era. Saxon-Wilansky [35] showed that a Banach space has 
a properly separable quotient if and only if it has a dense non-
barrelled subspace (Proposition. 4.6.5), hence Question 13.4.2. 
Juxtaposed is Question 13.4.1: "Let E be a barrelled space not 
endowed with the strongest lc topology. Does E have a BCE?" 
Chapter 4's pioneering partial answers by Robertson, Tweddle, and 
Yeomans [17, 37] include Proposition 4.5.6: If E has a dense 
barrelled subspace F with dim(E/F) > c, then E has a BCE. 
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In both questions, then, a dense subspace of codimension > c is 
desirable (cf. [30] and below), nonbarrelled in the one case, bar­
relled in the other! More partial answers to 13.4.1 include [34]: 
Every properly separable barrelled space has a BCE, asssuming the 
continuum hypothesis (CH). The proof shows that such a space E 
is barrelledly fit. ( E is (barrelledly) fit [24, 34] if there is a dense 
(and barrelled) subspace F with dim(^/F) = dim(E).) Assum­
ing a condition weaker than the generalized CH, we can prove [25] 
that: Every barrelled space E is the direct sum of two subspaces, 
one fit and the other with its strongest le topology. This quickly sug­
gests an alternate to Question 13.4.1: Is every barrelled, fit space 
barrelledly fit? 

Complete and partial answers to more of the open questions are 
forthcoming and there is the exciting report [3] that Taskinen has 
very recently solved "some of the most interesting" problems, in­
cluding 13.11.7. The short answer to 13.11.4, "Is there a Fréchet 
space E such that E ® ̂  E'h is barrelled?", is clearly "Yes, ap­
ply Proposition 11.2.2." Surely, the authors intended the ques­
tion for non-normable Fréchet spaces. Similarly, one could give 
a trite negative answer to 13.1.1: "Does every Banach space have 
a dense non-Baire hyperplane?" Obviously, the authors intend 
the question for infinite-dimensional Banach spaces, and the ques­
tion becomes very interesting indeed. Assuming Martin's Axiom 
(MA), Arias de Reyna [2] answered "Yes" for properly separable 
Banach spaces, thereby denying the Wilansky-Klee conjecture, and 
Valdivia [38] is credited with the more general Theorem 1.2.12 
which says: Every properly separable Baire space has a dense non-
Baire hyperplane, assuming MA. The authors present a proof with 
substantial technical deficiencies. Nevertheless, [27] generalizes 
Theorem 1.2.12 and provides the nontrite positive answer to the 
(intended) Question 13.1.1, assuming MA. 

The study of weak Baire and strong barrelledness conditions 
evolved from the original Dieudonné-Bourbaki view: 

Baire =*• barrelled 
to the vision espoused by the authors (pages 348 and 507, Table 
5; cf. [17, 18,31,36,39,42]): 

Baire => UBL = * TB =» SB => BL => QB = * barrelled. 
(Here, as in the book, UBL is unordered Baire-like, TB is to­
tally barrelled, SB is suprabarrelled; see below.) Distinguishing 
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examples are given in Chapter 9. All permanence properties ob­
tain except inductive limits, and closed graph/ open mapping the­
orems play an important role, as do the separable quotient prob­
lem and the classification of (LF)-spaces. The introduction [8] of 
quasi-suprabarrelled (QSB) spaces occasions here (and in [26]) a 
comprehensive view inspired by [15, 17]. We say that a barrelled 
space E is a db space, or is db, if given any increasing sequence 
of subspaces covering E, at least one of the subspaces must be 
dense and barrelled. We define d spaces (resp., b spaces) as above, 
with the deletion of "and barrelled" (resp., "dense and"). We de­
fine udb, ud, and ub just as we do db, d, and b above, respec­
tively, with "increasing" deleted. The db spaces were introduced 
in [17] as (dfö)-spaces, in [39] as SB spaces; d = QB, b = QSB, 
and by Theorem 2.2 of [36], udb = UBL. Also, "wè" is merely 
a new designation for "condition (G)" of [13], and ud spaces are 
just those barrelled spaces that are Baire-hyperplane [40]. The new 
unified nomenclature suggests the unforgettably clear relationships 
depicted in Figure 1. We also have (1) [ud A ub] =*• udb by The­
orem 4.1 of [36], and (2) [d A b] =* db, trivially. 

No other nonapparent relationships exist. For example, [ud A 
b] =*• db from (2), but [ud A b] *> u(d)b, and barrelled & [d V 
b]. While advantages of a perfectly symmetric, highly mnemonic 
notation are obvious, the older terms evoke a still-warm history of 
human endeavor we are loathe to ignore. 

A barrelled space E is totally barrelled (TB) [42] if, given any 
covering sequence of subspaces, one of the subspaces must be bar­
relled and have a finite-codimensional closure. In Figure 2 we 
readily see how TB and BL spaces fit into the general scheme. 
Again, all valid relationships follow immediately from this and 
(1) and (2), with a possible exception: We do not know whether 
[ub A d(b)] =* TB. The authors' Proposition 9.3.3 (cf. [13]) 

Baire = > udb => db barrelled 

^ 2 w d = = > d ^ 

FIGURE 1. General barrelled spaces. 



BOOK REVIEWS 431 

^ ub : 

^ ^ T B 

Baire=> udb ^ db ' u u A 

barrelled 

FIGURE 2. General barrelled spaces. 

offers partial answers: If E is ub and d(b), then E is TB pro­
vided either (i) E is separable, or (ii) E does not contain (p. Of 
the three classes outside the authors' linear scheme, the ud spaces 
possess all the permanence properties one could expect. However, 
the b and ub spaces are problematical: Here questions remain for 
the three-space problem, completions, and products, although the 
question of products is reduced to finite products (cf. [8]). The 
answers [26] are again positive in cases (i) and (ii). 

For metrizable barrelled spaces we have no such questions (cf. 
[26]). 

Many Banach spaces contain dense proper (LF)-subspaces (cf. 
8.7.9 and [33]), partially answering 13.8.14. By Theorem 9.1.30 
(cf. [26, 31-33, 35]): a Banach space has a properly separable quo­
tient if and only if it has a dense subspace dominated by a proper 
(LF)-space. Proposition 8.8.13 (corrected) states: Every barrelled 
space dominated by a proper (LF)-space has an infinite-dimensional 
separable Hausdorff quotient. (LF)-spaces and the larger class of 
barrelled spaces dominated by (LF)-spaces have identical relation­
ships all indicated below, excepting fact (l)/(2). 

Since the nonproper (LF)-spaces [ (LF)4-spaces] coincide with 
the Fréchet spaces, Figures 3 and 4 on p. 432 indicate that a proper 
(LF)-space is BL but not (d)b if it is metrizable. The converse 
holds [32]: For E a proper (LF)-space, the following are equivalent: 
(i) E is metrizable; (ii) E is BL [and not (d)b\\ (iii) E does 
not contain (p. Metrizable proper (LF)-spaces are called (LF)3-
spaces. (LF)2- and (LF)j-spaces are also defined, characterized, 
and illustrated in Chapters 8 and 9 and [31-33] so that the (LF).-
spaces (i = l , 2 , 3 , 4 ) partition the (LF)-spaces into rich, strong 
barrelledness-precise subclasses. 

As mentioned in [30], techniques of Saxon's dissertation prove, 
without use of CH, that every subspace of codimension < c in a 
Fréchet space E is barrelled. Valdivia [41] subsequently obtained 
this result for more general E 
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Baire : 

FIGURE 3. Metrizable barrelled spaces. 

Fréchet <=> Baire <=> udb t=$TB <=>db barrelled 

FIGURE 4. [Barrelled spaces dominated by] (LF)-spaces. 

(Proposition 4.3.11) by first proving Lemma 4.3.9 (cf. [6]), a 
recent version [26] of which affirms Question 13.4.3 and has the 
corollary: Every subspace of codimension <c in a Fréchet space is 
TB. One may greatly improve Proposition 8.6.8(iii) to read: Every 
subspace of codimension < c in an (LF)-space is a limit subspace 
(Definition 8.6.5). These combine: Every subspace of codimension 
< c in an (LF)-space is the inductive limit of an increasing sequence 
of TB spaces, which serendipitously yields, via standard closed 
graph techniques, a maximal generalization of Corollary 8.4.13 
(Köthe's homomorphism theorem), going from finite codimension 
to that < c [28]. 

Thus Question 13.4.3 has a TB space answer with "practical" 
(LF)-space results! We may similarly generalize Proposition 8.6.15; 
in particular: A subspace of codimension < c in an (LF)-space is 
itself an (LF)-space if and only if it is closed, and then in fact it 
must be countable-codimensional [29]. 

Historically, udb spaces [36] are a consequent of BL spaces and 
the proof of the Robertson-Robertson Closed Graph Theorem [15]. 
The QSB ( = b ) space form is by Ferrando and López-Pellicer [8]. 
Such would routinely shorten the argument in Example 6.4.5, and 
benefit the Observation 9.1.29 of a metrizable, barrelled, non-(d)b 
space G which is not an (LF)-space, although dominated by one. 
Even with earlier closed graph theorems, however, Ferrando and 
López-Pellicer could have expeditiously shown the existence of a 
metrizable barrelled space E that is not (d)b and is not dominated 
by an (LF)-space: Let E be any dense hyperplane of an (LF)3-
space. E is also ud (Figures 3 and 4). Noting [26] that Ferrando 
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and López-Pellicer's original E [8, §3] is not «df but is, by Figure 3, 
d, we see with startling ease that E is not dominated by an (LF)-
space, from the (elementary) bottom of Figure 4, which requires 
no closed graph theorem at all. 

Undeniably, the book fosters fundamental advances, a most 
happy fact celebrated by this review. Those who join the cele­
bration will find their own treasures. Others may simply suppose 
that, with such praise and superlatives, the reviewer must surely 
owe the authors a very great sum. In fact he does, more than he 
can tell, and so do all who care about barrelled spaces. 
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Encyclopaedia of mathematical sciences, vol. 7, Several complex 
variables I (A. G. Vitushkin, éd.), Springer-Verlag, New York, 
Berlin, Heidelberg, 1990, 241 pp., $59.00. ISBN 0-387-17004-9 

The present volume is the first of four devoted to the theory 
of functions of several complex variables by the Soviet encyclopa­
edia. This section of the encyclopaedia appears under the general 
editorship of A. G. Vitushkin; each of the four volumes consists 
of several articles written, with two exceptions by leading Soviet 
experts. The whole project is massive, totalling about a thousand 
printed pages, but for the most part the articles are not detailed ex­
positions of their subject, being instead summary outlines of their 
subjects with rather full commentary but generally without proofs. 
These four volumes are convincing evidence of the great devel­
opment seen by multidimensional function theory in the postwar 
era. 

The first volume, the volume under review, is devoted to mainly 
analytic topics as opposed, say, to the theory of coherent sheaves 
or the relations of function theory with algebraic geometry. For 
these subjects, see subsequent volumes. In this volume, we find an 
introductory essay entitled "Remarkable Facts of Complex Anal­
ysis" by Vitushkin, which gives a brief overview of the contents 
of all four of the volumes. This is followed by articles by G. M. 
Khenkin on integral formulas in complex analysis, by E. M. Chirka 
on complex analytic sets, by Vitushkin on the geometry of hyper-
surfaces and by P. Dolbeault, on the theory of residues in several 
variables. 

Vitushkin's introductory article is written in a style that is ac­
cessible to a broad variety of mathematicians. At the beginning 


