
BOOK REVIEWS 391 

This text will be most useful to those who need a brief and light 
introduction to modern developments in numerical techniques for 
initial value odes and for those who wish to explore some of the 
less widely known techniques for special problems. For a deeper 
understanding of the subject, the reader may need to turn to one 
of the other texts mentioned above. There is a good bibliography 
of over 600 references. Peculiarly, the page numbering in the text 
does not correspond to that in the list of contents. 
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Classically, crossed products of arbitrary finite groups over fields 
were introduced by E. Noether in 1929 in her lectures in Göttingen 
[vdW]. Earlier, the special case of cyclic algebras was defined by 
Dickson in 1906 [Dl, D2]; the first significant result about them 
was proved by Wedderburn in 1914 [W]. These crossed products 
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arose naturally as follows: let D be a division algebra finite-
dimensional over its center K, and assume D contains a maximal 
subfield F D K such that the extension F/K is Galois with Galois 
group G. For each x e G, it follows from the Skolem-Noether 
theorem that the action of x on F becomes inner when extended 
to D ; thus there exists 0 ^x e D such that ax = x~lax for all 
a e F. The elements {x\x e G} are linearly independent over F, 
and thus since dimKD = (dim^F)2, D = @xeGFx. Since xy 
and Ty both induce xy e G, it follows that xy(xy~~l) e F, the 
centralizer of F in D. Thus we may write xy = a(x, y)xy> 
where o(x,y) e F*, the nonzero elements of F. The map 
o: G xG -> F* satisfies 

(1) cr(x,yz)<7(y, z) = cr(xy, z)a{x,y)\ 

for all x, y, z e G, and thus is a 2-cocycle for the action of G 
on F. In this situation D is called a crossed product of the group 
G over the field F. More generally, given any finite Galois field 
extension F/K with Galois group G, and a 2-cocycle a: Gx G 
-> F*, Noether constructed a crossed product A = 0 ^ ^ Fx = 
(F, G9 a), where 4̂ is the F-vector space with basis {x\x € G} 
and multiplication given by 

(2) (tfx)(&)/) = tfè (j(x, y)xy, 

for all a, b e F, x, y e G. Then 4̂ is a central simple algebra 
of dimension |G| over its center K. 

A fundamental question then arose: Can every central simple 
algebra A be written as a crossed product? By work of Albert, 
Brauer, Hasse, and Noether [BHN, AH], it is true if the field K 
is an algebraic number field. However, the general question was 
open for 40 more years until Amitsur provided a counterexample 
in 1972 [Am]. Crossed products are still of great importance for 
central simple algebras, however, since in the Brauer group any 
such algebra is equivalent to a crossed product. 

Extending the notion of crossed products to allow coefficient 
rings other than fields was done by Jacobson in the early 1940s; he 
was motivated by the study of projective representations of groups 
into vector spaces over division rings. Although he was working 
over a division ring D, all the essential ingredients for the general 
case appear in his work. Here is his construction [J2]: Let G be 
a group, and a: G -+ AutZ> and a: G x G -> D* be two maps 
satisfying the condition (1) for a e D and z £ G (replacing az 
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with <za(z) ) and a new condition 

(3) a " = a(x,;y)a Ky)o(x,y) , 

for all aeD, x,y eG. Then the D-vector space A = (&xeG#x 
= (Z>, (5, a, cr) is an associative algebra with multiplication de­
fined as in (2); A is a crossed product of G over D. Note that 
a is not assumed to be a group homomorphism, and so D is not 
necessarily a G-module; in fact (3) says that D is a G-module 
precisely when a has values in the center of D. If one replaces 
the division ring by an arbitrary ring R with 1, the only additional 
condition needed to define a crossed product of G over R is that 
a take values in U(R), the group of units of i?, rather than in 
R*. With this change, the product in (2) is associative if and only 
if (1) and (3) hold. However, this does not seem to have been no­
ticed until 20 years later, by Bovdi [B]. For simplicity, we suppress 
the particular action and cocycle, and will write a crossed product 
of G over R as R*G. 

In fact, a more general construction than a crossed product was 
defined by Levitzki in 1931 [L]. He considers "normal products" 
RA of two finite-dimensional algebras R and A : RA is a finite 
free i?-module with a normalizing basis of elements of A. He 
proves that RA is semisimple if and only if both R and A are 
semisimple with their centers separable over the base field. How­
ever, he does not explicitly describe either the cocycle condition 
(1) or the "twisted" module condition (3). 

Jacobson also was interested in semisimplicity. He proves that 
if G is finite and H the subgroup of elements of G which are 
inner on D, then D * G is semisimple if and only if D * H is 
semisimple; in fact he shows that any nonzero ideal of D*G inter­
sects D * H nontrivially. As a consequence if H is trivial, D * H 
is simple; moreover if a = 1, then D * G = Mn(D'), n = |G|, 
where Mn(Df) is the ring ofnxn matrices over some other di­
vision ring D'. These "trivial" crossed products were used earlier 
in proving a Galois correspondence theorem for a finite group of 
outer automorphisms of a division ring [Jl]. 

This special case of a crossed product with trivial cocycle is 
now called a skew group ring, and denoted by RG. Following up 
on Jacobson's work, the skew group ring was used by Azumaya 
and Nakayama in the later 1940s to give a Galois correspondence 
theorem for simple Artinian rings [Az, NA]; there was also work by 
Hochschild on this problem. Among Azumaya's results is the fact 
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that if R is simple and G outer, then RG is simple. Moreover 
if R is also Artinian and G is finite, then RG is a simple ring. 

Crossed products over general rings do not seem to have ap­
peared again until the 1960s when they were considered by Bovdi, 
as mentioned above; his interest in them seemed to be as gen­
eralizations of group rings. They also made their appearance in 
the late 1960s in work of Miyashita [Mi], who made a connection 
between crossed products and Galois extensions in the sense of 
Chase-Harrison-Rosenberg, although for noncommutative rings. 

Finally in the 1970s crossed products began to be studied more 
intensively, as a result of two separate developments. One was 
the study of finite group actions on noncommutative rings; this 
area had been given a big boost by work of Bergman-Isaacs and 
Kharchenko proving the existence of fixed elements in some fairly 
general situation. The skew group ring then proved very useful 
in studying the fixed ring R . In particular when |G| e R, 
RG and R are very closely related. For then the element e = 
\G\"112x€Gx i s a n idempotent in RG and e(RG)e s RG . This 
elementary fact enables one to study R by passing through the 
skew group ring RG. Although perhaps it was known earlier (and 
in fact Jacobson observed e(RG) = eR), this very useful trick 
seemed to appear explicitly only about 1975 [ZN, FO]. Even if 
|G| is not a unit in R, there is still a strong connection between 

/ni 

RG and R . Thus RG itself became an interesting object of 
study. 

The second development concerned ordinary group rings R[G]. 
A lot of progress had already been made in the 1960s and early 
1970s in group rings, much of it by Passman (the best reference is 
his earlier book [PI]). In some of the remaining difficult problems, 
it seemed that a more general object might be useful in order to 
do inductive arguments. That is, consider an arbitrary group G 
with normal subgroup N. Intuitively, the group ring R[G] is 
"made up" from the subgrouping R[N] and the quotient group 
G/N. If we could regard R[G] as a crossed product of G/N 
over R[N], and prove results for crossed products, then induction 
could be used to prove results about R[G]. In fact the definition 
of crossed product is just general enough to cover this situation. 
For, write S = R[N] and H = G/N. For each x e H, let x e G 
be a fixed coset representative. Then R[G] = (&x€H R[N]x = 
®x€HSx, and so [x\x e H} is an 5-basis for R[G\. Since 
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N < G, x~lR[N]x = R[N] and so x induces an automorphism 
a(x) on S by conjugation. Moreover if x G H and s e S, then 
six = x(x~lsx) = x s 0 ^ , and if x, y e H, then (Nx)(Ny) = 
iVxy, and so xy = a(x, y)xy for a(x, y) € N ç C/(5'). Thus 
iî[G] = S*i / = jR[iV]*C?/iV. 

Although crossed products were used by Zaleskiïin 1971 [Z] to 
describe quotients of certain group algebras, the first real use as 
an inductive tool seems to have been by Lorenz and Passman in 
studying prime ideals in Noetherian group rings [LP2]; they used 
the technique to lift information from the group algebra of a group 
of finite index studied by Roseblade. The real triumph of crossed 
product methods, however, came more recently in the fundamen­
tal Induction Theorem of J. Moody [Mo]. This result relates the 
finitely-generated modules over (for example) a polycyclic-by-finite 
group G to the modules over a finite set of finite subgroups of G. 

These examples show that the two subjects interact in a mutually 
beneficial way. One can generalize many group ring techniques to 
prove results about RG and R*G ; these apply to give results about 
fixed rings. In the other direction, knowing about group actions 
enables one to prove results about crossed products and then group 
rings. Thus in many ways the two subjects have become one, and 
that is the topic of this book. 

The first chapter of the book, while introducing the basic def­
initions as one would expect, in fact is mostly concerned with 
the more general situation of graded rings. Observe that a crossed 
product S = R*G is graded by the group G, where for x e G, the 
xth component of S is given by Rx. There are several reasons 
for considering this more general situation. One, of course, is that 
many arguments work just as well for graded rings as for crossed 
products and so a more general result can be obtained for free. The 
less obvious reason is that crossed product results can be applied 
to prove graded ring results, by means of the "Duality Theorem." 
Such a result was known for von Neumann algebras [NT] before 
it was known in ring theory; an algebraic formulation for finite 
groups was given by M. Cohen and the reviewer [CM]. For a K-
algebra S graded by a finite group G of order n, the theorem says 
the following: if S#K[G]* is the (Hopf algebra) smash product of 
the dual K[G]* of K[G] with S, then G acts as automorphisms 
of S#K[G\* and the skew group ring (S#K[G]*)G s Mn(S), the 
n x n matrices over S. Now the plan is clear: to prove a result 
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about S, try to prove one about S#K[G]*, and apply known facts 
about skew group rings to prove it for Mn(S), which is close to S. 
The same technique can be used when G is infinite by using an 
extension of the duality theorem due to D. Quinn. This method 
is used in Chapter 1 to prove results about induced modules and 
analogs of Maschke's theorem for graded rings and crossed prod­
ucts. Throughout the book, many other facts are proved for graded 
rings as well as crossed products. 

Chapter 2 demonstrates that some of the basic techniques from 
group algebras can be used for crossed products, in particular the 
so-called "delta methods" used with great effect by Passman in 
group algebras. For any group G, its delta subgroup A(G) is the 
subgroup of elements with finitely many conjugates in G. The 
technique is to try to reduce various linear identities in R * G to 
linear identities in R*A(G)9 where they may be more tractable. 
The linear identities of particular importance arise in determin­
ing when R * G is semiprime (that is, when R has no nilpotent 
ideals). The author proves necessary and sufficient conditions for 
semiprimeness in this chapter, most of the results coming from 
his own work [P3]. We remark that the crossed product situation 
is considerably more difficult than that of group algebras. This 
chapter also begins the study of when a crossed product satisfies a 
polynomial identity, a topic which is finished at the end of Chapter 
5, where complete necessary and sufficient condtions are given. 

The third chapter returns to basic definitions and builds up nec­
essary background material on the symmetric quotient ring of a 
prime ring and on what are called " Z-inner" automorphisms. Let 
R be a prime ring; that is, the product of two nonzero ideals of 
R is nonzero. The symmetric quotient ring Q = Q(R) is defined 
for any such R, and can be characterized as the unique (prime) 
overring with the same 1 satisfying several technical conditions, 
the most useful being that for any q e Q, there exists a nonzero 
ideal I of R that such Iq, ql ç R. If R is a commutative do­
main, then Q(R) is simply the usual field of fractions of R. If R 
is simple, clearly Q(R) = R. As a nontrivial example, a theorem 
of Kharchenko says that if if is a free algebra of rank at least 2 
over a field k, then Q(R) = R [Kh2]. 

The importance of Q(R) lies in its relation to the AMnner au­
tomorphisms of R ; these are simply automorphisms of R which 
become inner when extended to Q. These automorphisms are 
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named for Kharchenko and were the ones which caused difficul­
ties in trying to prove his Galois correspondence theorem for semi-
prime rings [Khl]. Although Kharchenko never considered cross 
products, it turns out that these automorphisms are also a major 
obstruction in trying to pass information between R and R*G. 
For example, in trying to generalize the theorem of Jacobson-
Azumaya mentioned above to prime rings, it is false that R prime 
and G outer implies RG is prime; the automorphisms which are 
outer on R but inner on Q cause trouble [Ml]. The same phe­
nomenon arises throughout the study of crossed products. Thus 
a basic technical tool (based on [FM]) is the following: If <5inn 

is the set of Z-inner automorphisms in G, and we consider G 
extended to Q = Q(R), then in any crossed product R * G, 
Ô*Ginn = ô®c^'[^inJ > where C[Crinn] is a twisted group algebra 
over the center C of Q ( a twisted group algebra has a cocycle 
but trivial action). A consequence is that any nonzero ideal of 
R * G intersects R * Ginn nontrivially. This generalizes the result 
of Jacobson mentioned above; in his case, where R = D, Ginn 

coincides with the usual subgroup of inner automorphisms. Also 
in this chapter, various results are proved about when a crossed 
product is symmetrically closed and about the group of X-inner 
automorphisms of a crossed product. 

It is interesting to note that very similar ideas were introduced 
into operator algebras at about the same time, although there seems 
to have been no communication going on. If A is a prime C*-
algebra, the role of Q(A) is played by M°°(A), the direct limit of 
the multiplier algebras M (I) of the closed ideals of A [E]; in fact 
the only difference between Q(A) and M°°(A) is that M°°(A) 
uses only the closed ideals. The analog of X-inner automorphisms 
are called "partly inner"; they were used to study crossed products 
of C*-algebras in [Ri]. 

Chapter 4 and Chapter 5 examine prime ideals in crossed prod­
ucts, with Chapter 4 concerned mostly with finite groups and 
Chapter 5 with polycyclic-by-finite groups. The basic results in 
Chapter 4 are due to Lorenz and Passman, and give correspon­
dences between primes in R * G and primes of R, if either G 
is finite or R is Noetherian and G is polycyclic-by-finite [LP1, 
P2]. A lovely consequence of this work is Incomparability: That 
is, if Px 2 P2 are prime ideals of R * G, then Px n R 2 P2 n R 
[LP1]. This result has been generalized by Heinicke and Robson 
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to normalizing extensions and a proof appears in [McR]; however, 
it is still worthwhile to see here a proof for the important special 
case of crossed products. Other interesting results in this chapter 
concern graded rings and conditions for R * G to be semiprime 
in terms of the Sylow subgroups of G. Chapter 5 begins by sum­
marizing the fundamental work of Roseblade on prime ideals of 
group algebras of polycyclic-by-finite index [R]; as mentioned ear­
lier, the finite index step was completed by Lorenz and Passman 
using crossed product techniques. Much of the rest of Chapter 5 
is devoted to extending many of these results first to twisted group 
algebras, and then to crossed products. There is also a section on 
when JR* G is a Jacobson ring, and finally the work on polynomial 
identities mentioned earlier. 

Chapter 6 considers skew group ring applications to fixed rings 
of finite group actions. Many of these results, particularly those 
concerning the existence of fixed elements and the relation be­
tween trace functions and RG, are already in the monograph by 
the reviewer [M2]; however, there are a number of newer results 
which deserve notice. The most striking of these is the solution 
by D. Quinn [Q] of the integrality question, which had been open 
for about 10 years: He proved that if G is a finite group act­
ing on R with \G\~l e R, then R is Schelter-integral over RG. 
Quinn's proof involved a clever new look at work on integrality 
by Pare-Schelter and Lorenz-Passman; the necessary background 
is all included in this chapter. Also contained here are applications 
of the work of Chapter 4 to the prime correspondence between R 
and R ; when |G| e R one obtains a 1-to-1 correspondence 
between G-orbits of primes in R and a well-defined equivalence 
class of primes in R , where for P e Speci?, p e Speci? , 
{Px\x e G} <-• {p\p is the minimal over P n RG}. We note that 
further results in this direction are contained in the expository 
paper [M3]. 

The theme of group actions is continued in the next chapter, 
the main point of which is the Galois correspondence theorem of 
Kharchenko. His general theorem for " iV-groups" (after Noether) 
acting on semiprime rings is quite technical; the presentation here 
focuses on the simpler case where R is a prime ring and the "al­
gebra of the group" B(G) is a domain. Here B(G) is constructed 
as follows: Recall from above the symmetric ring of quotients 
Q of R, which has center C, and the subgroup G{ of Z-inner 
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automorphisms in G. Then B(G) is the C-linear span of all units 
q of Q such that conjugation by q gives rise to some x e Ginn 

(we remark that B(G) was introduced by Noether for simple rings 
in [N]). 

The assumption that B(G) is a domain includes the case where 
either R (and so Q ) is a domain or G is AT-outer; in particular 
one recovers as a corollary the old results of Hochschild, Azu-
maya, and Nakayama on outer Galois theory of simple Artinian 
rings, and of Jacobson on Galois theory of division rings. In ad­
dition these results apply to free algebras, in which case one gets 
a correspondence between subgroups and intermediate free alge­
bras. Some other interesting facts about algebras are also proved, 
such as when RG is finitely generated (almost never, unlike the 
commutative situation) and the computation of the Hubert series 
of RG. These free algebra results are the work of Kharchenko, 
Dicks, and Formanek; we note that another exposition of them, 
by Dicks, recently appeared in [C]; however, the exposition here 
of the Galois results seems more conceptual. An exposition of 
Kharchenko's general theorem, including actions of derivations, 
will appear in his forthcoming book [Kh3]. 

Chapter 8 contains what may be the high point of the book: an 
exposition of Moody's theorem on induced modules and Grothen-
dieck groups. Not only is this a deep and lovely theorem in its 
own right, but also it has some important applications: It solves 
two outstanding group ring problems concerning zero divisors and 
Goldie rank. Moreover, it is truly a crossed product theorem, since 
the proof uses the inductive step R*G = (R*N)*G/N for N < G ; 
the results cannot be proved by only considering group rings. The 
theorem says the following: Let R * T be a crossed product with 
R ring Noetherian and T a polycyclic-by-finite group. Suppose 
Gj, G2, . . . , Gt are representatives of the conjugacy classes of the 
maximal finite subgroups of T. Then the Grothendieck group 
G0(R * T) is generated by images of the various G0(R * Gt) under 
the induced module map. 

The proof given here is a simplification of Moody's original ar­
gument, and uses ideas from the subsequent proofs by Cliff and 
Weiss and by Farkas and Linnell. It is homological in nature; with 
the author's usual complete style, he proves most of the neces­
sary preliminaries, with only a few references to the literature for 
standard background material. 
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The last chapter continues Chapter 8 and gives the applications 
to group rings mentioned above. The first major application is to 
the zero-divisor conjecture: That is, if G is a torsion-free group, 
must K[G] be a domain? The general question is still open, af­
ter more than 40 years. As a consequence of Moody's theorem, 
one can prove: Let R * G be a crossed product with R an Ore 
domain and G torsion free. If G has a finite subnormal series 
(I) = G0 < Gx < - - < Gn = G such that each quotient Gi+l/Gt is 
locally polycyclic-by-finite, then R*G is an Ore domain. In partic­
ular, K[G] is a domain if G is a torsion-free solvable group. The 
previous best-known result in this direction was that the conjecture 
held if G itself was polycyclic-by-finite, work due to K. A. Brown, 
Farkas-Snider, and Cliff. The second application of Moody's the­
orem discussed here is to the Goldie rank conjecture, proposed by 
Farkas and Rosset about 1980. This is actually a generalization of 
the zero divisor question, for prime Noetherian group rings K[G] ; 
here K[G] has a classical ring of quotients Q = Mn(D), the nxn 
matrices over a division ring D. The conjecture is that n equals 
the least common multiple of the orders of the finite subgroups of 
G. Moody's theorem implies it is true when G is polycyclic-by-
finite, the only known situation when K[G] is Noetherian. These 
applications depend on work of Kropholler, Linnell, and Lorenz 
as well as that of Moody. The chapter also contains some interest­
ing results of Lorenz and Passman which enable them to explicitly 
compute G0(i?*r) for several groups T, using Moody's theorem. 

We have only mentioned the highlights of the book; many other 
interesting topics are discussed. Altogether, there is a wealth of 
information here, most of which has not appeared in book form 
before. Moreover, many of the proofs given here are consider­
ably easier than the originals, and are presented in the author's 
usual clear and complete style. Occasionally some of the technical 
details may seem daunting, especially in the sections on duality, 
semiprimeness, and prime ideals of Noetherian group rings; but 
all the details are there, and with perseverance can be followed. 

I would strongly recommend the book to anyone interested in 
group actions on rings, group algebras, and their interaction. 
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Around 1980 the completion of the classification of the finite 
simple groups was announced (see [G]). Group theorists of a 


