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ON THE LEBESGUE MEASURABILITY OF CONTINUOUS 
FUNCTIONS IN CONSTRUCTIVE ANALYSIS 

DOUGLAS BRIDGES AND OSVALD DEMUTH 

ABSTRACT. The paper opens with a discussion of the distinc­
tion between the classical and the constructive notions of "com­
putable function." There then follows a description of the three 
main varieties of modern constructive mathematics: Bishop's 
constructive mathematics, the recursive constructive mathemat­
ics of the Russian School, and Brouwer's intuitionistic mathe­
matics. The main purpose of the paper is to prove the indepen­
dence, relative to Bishop's constructive mathematics, of each 
of the following statements: 

There exists a bounded, pointwise continuous map of [0, 1] 
into R that is not Lebesgue measurable. 
If ju is a positive measure on a locally compact space, then 
every real-valued map denned on a full set is measurable 
with respect to ju . 

1 
The purpose of this article is to answer the following question 

within a framework which makes the discussion accessible to math­
ematicians who know little or nothing about the foundational tech­
nicalities of modern constructive mathematics: 

In constructive mathematics, are there any real-
valued functions defined on [0, 1] that are not 
Lebesgue measurable! 

As we shall see, the answer to this question depends on the vari­
ety of constructive mathematics within which measure theory is 
developed. 

We first explain the difference between constructive mathemat­
ics and the "classical" mathematics practised by the majority of 
our colleagues today, and describe the three varieties of construc­
tive mathematics with which this paper is concerned. The reader 
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may find it helpful to consult Chapters 1 and 2 of Bridges-Richman 
at this stage. 

The main difference between constructive and classical mathe­
matics lies in the information considered sufficient to characterize 
mathematical objects and their properties. In particular, the con­
structive mathematician pays close attention to the interpretation 
of the phrase "there exists:" if he says that there exists an object x 
with the property P, he means that he has an algorithm for con­
structing, to any desired degree of approximation, a certain object 
x and for verifying that x has the property P ; it is not enough 
for him to establish that the assumption "there does not exist an 
object x with the property P " leads to a contradiction, as an ar­
gument of that sort does not, of itself, provide a construction of 
the required object x. 

To illustrate these distinctions, let us consider a comparatively 
simple mathematical notion: that of a binary sequence. Classi­
cally, this is simply a sequence in which each term belongs to 
{0, 1} ; but from our constructive point of view a binary sequence 
(an) is an algorithm which, applied to any positive integer n, pro­
duces an output an belonging to {0, 1}. 

Note that, in order to justify constructively the assertion that 
an belongs to {0, 1}, we must be able to tell whether an = 0 or 
an = 1 ; it does not suffice to prove that an cannot fail to belong to 
{0, 1} . Consider, for example, the following putative specification 
of a binary sequence (fn) : 

fn = 0 if Fermat's conjecture is false, 
= 1 if Fermat's conjecture is true. 

This is an acceptable classical definition of a binary sequence; 
moreover, traditional computability theory says that (fn) is a com­
putable bimxy sequence, since, classically, there exists an algorithm 
—either the algorithm with constant output 0, or that with con­
stant output 1—which, applied to any positive integer n, outputs 
fn [Kfoury et al, p. 2; cf. Rogers, pp. 9-10]. However, the above 
information does not specify a constructive binary sequence, since, 
in the absence of a resolution of Fermat's conjecture, we cannot tell 
which of the two algorithms in question computes the terms fn . 
Of course, if Fermat's conjecture were resolved tomorrow, then 
we would be able to say which algorithm produced the sequence 
(fn), which would then be constructively defined. 



LEBESGUE MEASURABILITY OF CONTINUOUS FUNCTIONS 261 

A more dramatic example of the distinction under discussion is 
provided by the following definition: for all natural numbers n, 

cn = 0 if the Continuum Hypothesis is true, 
= 1 if the Continuum Hypothesis is false. 

Here we have a classically acceptable binary sequence which is 
"computable" by one of two constant-output algorithms, but for 
which, within Zermelo-Fraenkel Set Theory with the Axiom of 
Choice, we will never be able to decide which of these two algo­
rithms computes the terms cn . Within constructive mathematics, 
however, (cn) poses no problem: it is simply not defined construc­
tively. 

It is hard to take seriously a definition of "computable binary 
sequence" which applies to (cn). We believe that there is a mean­
ingful distinction between sequences like (fn) and (cn) on the 
one hand, and constructive (in our sense) binary sequences on the 
other. Since classical mathematics does not possess the logical re­
finement necessary to reveal that distinction, there is a strong—we 
would argue overwhelming—case for the use of constructive logic 
in computability theory.1 

Now consider the following statement, which Bishop has la­
belled the limited principle of omniscience: 

LPO If (an) is a binary sequence, then either there exists 
n such that an-\> or else an-Q for all n. 

In the classical setting, pure logic dictates that LPO is trivially 
true. But, interpreted constructively, LPO is a much stronger state­
ment than at first appears: if LPO holds constructively, then there 
exists an algorithm srf whose input set consists of all binary se­
quences, whose outputs belong to N U {-1}, and which, on being 
applied to a binary sequence (an), behaves as follows: 

if there exists n with an = 1, then stf outputs such a 
natural number n ; 

if an = 0 for all n, then J / outputs - 1 . 

Moreover, by regarding such sequences as (fn) and (cn) as "computable," 
classical computability theory would seem to be divorcing itself from computational 
practice. What would happen if, in response a request that he write software to 
perform a certain computation, an employee presented his boss with two programs 
and the information that, although one of these programs performed the required 
computation, he did not know which one? 
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A moment's reflection should suggest to anyone familiar with com­
puter programming that such an algorithm is unlikely ever to ma­
terialize, and therefore that LPO should not be accepted as a prin­
ciple of constructive mathematics. To turn that suggestion into 
complete conviction, we need only observe that within the con­
text of recursion theory, in which binary sequences are recursive 
functions with values in {0,1}, there is no recursive algorithm 
which, applied to any binary sequence (an), will output 1 if there 
exists an index n with an = 1, and output 0 if an = 0 for all n : 
indeed, such an algorithm would provide us with a procedure for 
deciding, for any program P with integer inputs and any integer 
n, whether or not P will halt when given the input n [Bridges-
Richman, Chapter 3, (1.2)—(1.4)]. It is a basic and famous result 
of elementary recursion theory that no such decision procedure 
exists, even classically [Rogers, Chapter 1, Theorem VII; Kfoury 
et al., pp. 10, 49]. 

There are many important results of classical mathematics for 
which a constructive proof could be transformed into one of LPO, 
and which are therefore constructively unacceptable. Among the 
more elementary of such results are the following: 

(i) the law of trichotomy for real numbers: for each real num­
ber x9 x > 0 or x = 0 or x < 0 ; 

(ii) the least-upper-bound principle for sequences: to each se­
quence (an) of real numbers that is bounded above, there 
corresponds an upper bound s such that for each e > 0 
there exists n with an > s - e ; 

(iii) the sequential compactness property of the closed interval 
[0, 1] : each sequence in [0, 1] contains a convergent sub­
sequence. 

In fact, for slightly different reasons, we do not expect to find a 
constructive proof of even the following weak form of trichotomy 
for R: 

(iv) for each real number x, either x > 0 or x < 0. 

Fortunately, there are good constructive substitutes for the in­
admissible trichotomy laws. For example, we can prove that if 
it is impossible that the real number x satisfies x > 0, then 
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x < 0 } Also, if a, b are real numbers with a < b, then for any 
real number x either a < x or x < b. The last result is com­
monly used to split a constructive argument into cases, where a 
split of the form "either x > a or x < a" would be unacceptable. 

Since the main object of our paper is an investigation of Lebesgue 
measurability, it is appropriate to end this brief discussion of 
the differences between constructive and classical mathematics by 
pointing out that the failure of LPO to hold constructively has se­
rious repercussions within measure theory: for example, it implies 
that (whatever the constructive definition of the Lebesgue integral 
and related concepts may be) Lebesgue's classical monotone con­
vergence theorem will not hold unchanged in the constructive set­
ting. In order to obtain a viable constructive version of Lebesgue's 
theorem, we are forced to postulate the existence (computability!) 
of the relevant supremum. To be precise, the constructive theorem 
states that 

If f\ < f2 < • • • wre Lebesgue integrable func­
tions on [0,1], then (fn) converges in measure 
to a Lebesgue integrable junction if and only if the 
sequence (ƒ fn) of integrals converges to a limit in 
R [Bishop-Bridges, Chapter 6, (8.6)]. 

2 

We now describe the three varieties of constructive mathematics 
with which we shall work below. These varieties differ in several 
respects, not least in the notion of algorithm that they admit. 

The first variety, Bishop's constructive mathematics (hereafter 
referred to as BISH), considers "algorithm" to be a primitive no­
tion, does not depend on any special formalism, and is consistent 
with each of the other two varieties and with classical mathemat­
ics (CLASS); in particular, every proof of a theorem within BISH 
is also a proof of that theorem in classical mathematics. In view of 

2Note that the statement Vx G R(->(x < 0) =• x > 0) is constructively equiva­
lent to Markov's principle, 

If (an) is a binary sequence such that -Wn(an = 0), then there 
exists n such that an = 1, 

which embodies an unbounded search. Although Markov's principle is accepted, 
with some reservations, by practitioners of the Russian School of recursive con­
structive mathematics, it is not accepted by most constructive mathematicians. We 
shall not use it in this paper. 
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this consistency, BISH can be regarded as the constructive core of 
classical mathematics. 

The second variety, the constructive mathematics of the Rus­
sian School of Markov (RUSS), is based on the same underlying 
logical principles as BISH, but pins down the notion of algorithm 
by adopting the Church-Markov-Turing thesis that every sequence 
of natural numbers is recursive. It also studies only those mathe­
matical objects which are effectively codable by natural numbers. 
(For example, Gödel numbers are effective codes of partial recur­
sive functions.) Thus, in a highly consistent way, the practitioners 
of RUSS endorse Bishop's view that 

The primary concern of mathematics is number, 
and this means the positive integers ... Everything 
attaches itself to number, and every mathematical 
statement ultimately expresses the fact that if we 
perform certain computations within the set of pos-
itive integers, we shall obtain certain results. [Bish­
op, pp. 2-3]. 

It is important to note that although RUSS contains results that 
at first sight contradict theorems of classical mathematics, if such 
results are correctly interpreted they are acceptable within the clas­
sical system. For example, there exists in RUSS a pointwise con­
tinuous function ƒ: [0, 1] -> R that is not uniformly continuous. 
However, this does not contradict the classical uniform continuity 
theorem: from a classical point of view, ƒ is a recursive function 
defined and recursively pointwise continuous on the set of recursive 
real numbers; but, precisely because of the uniform continuity the­
orem, ƒ cannot be extended to a pointwise continuous function 
on the set of all classical real numbers (recursive and nonrecursive) 
between 0 and 1 inclusive. 

The third variety, and historically the oldest, is Brouwer's in-
tuitionistic mathematics (INT). Based on Brouwer's intuitionistic 
philosophy, this variety uses a classically inexplicable notion of 
"free choice sequence" to develop principles that lead to results ap­
parently inconsistent with both classical mathematics and RUSS 
[Heyting]. In this case, it is more appropriate to say that these 
results, and the intuitionistic constructions used to obtain them, 
cannot be interpreted using the philosophy and methods of classi­
cal mathematics. 

If, at the risk of offending strict adherents of RUSS or INT, 
we work formally and forget the underlying philosophies, each of 
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these two varieties can be viewed as BISH with certain adjoined 
principles. In the case of RUSS, the essential principle adjoined to 
BISH is the Church-Markov-Turing thesis, although another prin­
ciple, due to Markov, is also added in some contexts (see, for 
example, Bridges-Richman, Chapter 2, (6.5)). From our point 
of view, the most significant consequence of the Church-Markov-
Turing thesis is a singular covering property of the line which em­
bodies a strong denial of the Heine-Borel theorem; this property 
will be explained in detail shortly. 

On the other hand, INT can be viewed formally as BISH to­
gether with certain principles which lead to the intuitionistic uni­
form continuity theorem: 
UC Every function from a compact metric space into a 

separable metric space is uniformly continuous. 
A fuller discussion of BISH, RUSS, and INT is found in Chapters 
1, 3, and 5 of Bridges-Richman. 

Since BISH is consistent with INT, RUSS, and CLASS—in other 
words, any proof of a proposition within BISH also counts as 
a proof of that proposition in each of these three varieties of 
mathematics—we have the possibility of independence results rel­
ative to BISH. For example, the statement UC is independent 
of BISH, as is its negation, because UC is a theorem of INT 
but there exists counterexample to UC within RUSS [Bridges-
Richman, Chapter 3, (3.3)]. The following independence result 
is an immediate consequence of Corollary 2 and Theorem 6 be­
low, and is the main result of this paper. 

Theorem 1. Each of the following statements is independent of 
BISH. 

(i) There exists a bounded, pointwise continuous map of[0, 1] 
into R that is not Lebesgue measurable. 

(ii) If pt is a positive measure on a locally compact space, then 
every real-valued map defined on a full set is measurable 
with respect to pi. D 

3 

From now on, we shall work within BISH, extended to either 
RUSS or INT where necessary. For the reader's convenience, we 
begin by summarizing those aspects of constructive analysis and 
measure theory that we shall need for our discussion of Lebesgue 
measurability. Full details of those matters are found in Chapters 
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1-4 and 6 of Bishop-Bridges; Demuth-Kucera contains a develop­
ment of measure theory within RUSS. 

A metric space (X, p) is said to be 

compact if it is totally bounded and complete; 
locally compact if each bounded set in X is 

contained in a compact set. 

Note that, following Bishop, we require totally bounded sets to 
be nonvoid; so that a compact or locally compact subset S of a 
metric space (X, p) is located, in the sense that the distance 

p(x9S) = inf{p(x9y): yeS} 

from x to S exists for each x in X. The metric complement of a 
located set S consists of all points x in X such that p(x9 S) > 0. 
A test function on a locally compact metric space X is a uniformly 
continuous mapping ƒ : X -• R such that f(x) = 0 for all x 
in the metric complement of some compact set (called a compact 
support of ƒ) ; the set of test functions on X is denoted by C(X). 
A positive measure on I is a nonzero linear mapping p of C(X) 
into R such that p(f)> 0 for each nonnegative test function ƒ 
on X. 

To avoid excessive generality, we restrict attention to the inte­
gral constructed by extending a positive measure /i ona locally 
compact space (X, p). A function ƒ : F -• R, where F c X, is 
said to be integrable if there exists a sequence (ƒ„) of test func­
tions on X such that 

X ^ ( l / J ) converges, and 

oo oo 

J2 fn(x) = / M whenever ]T !ƒ„(*)| converges. 
n=\ n=\ 

In that case, the sequence (fn) is called a representation of ƒ by 
test functions, and the integral of ƒ , 

/ • 

is independent of that representation; we also (loosely) call the 
function f ^ f f dp a positive measure on I , A subset F of 

That is, there is an algorithm which, applied to a pair (x, e) with * € X and 
e > 0 , computes /?(.x;, S) with an error at most e . 
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X is full with respect to p if there exists a p- integrable function 
whose domain includes F . 

A complemented set in X is an ordered pair A = (A1, A0) of 
subsets of X such that p(x, y) > 0 for all x in A1 and y in 
A0 ; the characteristic function of A is the map %A: ^ u ^° "* 
{0, 1} such that XA(AX) = {1} and #^(4°) = {0}. Operations 
on complemented sets A and B are defined in terms of their 
characteristic functions; for example, A - B has characteristic 
function /^(l - %B). An integrable set (with respect to p) is a 
complemented set A whose characteristic function is integrable; A 
then has measure p(A) = f xAdp. If ƒ is an integrable function, 
then the complemented set 

(f>t) = ({x:f(x)>t},{x:f(x)<t}) 

is integrable for all but countably many t > 0 [Bishop-Bridges, 
Chapter 6, (4.11)]. Note that (ƒ > t) is a complemented set, 
as all functions ƒ considered in integration theory are strongly 
extensional: that is, if \f(x) - f{y)\ > 0, then p(x, y) > 0. 

It can be shown that if F is a full set and A is an integrable set 
with positive measure, then F n A1 is nonvoid [Bishop-Bridges, 
Chapter 6, (3.4)]; in particular, this means that, given an integrable 
set A with positive measure, we can construct an element of A1. 

A compact integrable set is an integrable set K = (Kl
 9 K°) such 

that Kl is compact and K° is the metric complement of Â 1 

in X ; we usually then identify K with Kl and X - K with 
K°. A comparatively deep theorem of constructive measure theory 
states that if A is an integrable set with positive measure, then for 
each e > 0 there exists a compact integrable set K such that 
K c A1 and pi(A - K) < e [Bishop-Bridges, Chapter 6, (6.7)]. 
The following lemma, whose proof is included for completeness, 
depends on that result. 

Lemma 1. Let f be an integrable function, and A an integrable 
set with positive measure» with respect to a positive measure p on 
a locally compact space X. Then for each e > 0 there exist a 
compact integrable set K and a test function g: X -+ R such that 
K c A1, p(A -K)<e, and \f(x) - g(x)\ <e for all x in K. 
Proof. Given e > 0, we may assume that p(A) > e. By Bishop-
Bridges [Chapter 7, (3.13)], there exists a test function g on I 
such that ƒ |ƒ - g\ dp < e2/4. Choose ô in (e/2,e) such that 
the complemented set (| ƒ - g\ > S) is integrable, and let B be 
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the complemented set A - (\f - g\ > S). Then B is integrable, 
Bl c A1, and, as ô~l\f(x) - g-(.x)| > 1 whenever %A_B{x) = 1, 

ti(A-B)<ô~l J\f~g\d/i<e/2. 

Also, |/(x) - g(x)\ < S < e for all x in 2?1. As //(̂ 4) > e > 
//(̂ 4 - 5 ) , we see that /i(B) > 0. We can therefore construct a 
compact integrable set K such that K c Bl and fi(B-K) < e/2. 
Then |/(x) - £(x)| < e for all x in Jf, and K c A1 ; also, 

//(^ - #) < //(^ - 5) + n(B -K)<e. ü 

Let /i be a positive measure on a locally compact space X. A 
real-valued function ƒ defined on a full set is said to be measur­
able if for each integrable set A and each e > 0, there exist an 
integrable set B and an integrable function g such that Bl c A1, 
//(^ - J8) < «, and |/(x) - #(x)| < e for all x in Bl. If ƒ is 
a measurable function, and g is an integrable function such that 
I/Ml < <?(*) for all x in a full set, then ƒ is integrable [Bishop-
Bridges, Chapter 6, (7.11)]. 

We now introduce a remarkable notion that plays an impor­
tant role in the production of counterexamples within RUSS. Let 
ƒ denote the interval [0, 1], and let 0 < a < 1. A sequence 
[a0, b0], [a{, b{], ... of proper closed subintervals of / is called 
an a-singular covering of I if the following conditions hold: 

(i) for all m and n, either [am, bm] and [an, bn] are dis­
joint or they have at most an endpoint in common; 

(ii) a0 = 0 and bx = 1 ; 

(iii) for each # € ( 0 , 1 ) there exist m, n such that bm = an 

and am<x <bn\ 

(iv) the partial sums of the series X^lolJJ are bounded 
by a. 

It follows from (ii) and (iii) that for each x in / , 0 < x < b0, 
or ax < x < 1, or there exist m, n such that bm = aM and 
am < x < bn. (We remind the reader that, although the classical 
law of trichotomy does not hold in constructive mathematics, we 
can prove that if a, b are real numbers such that a <b, then for 
each real number x either a < x or x < b.) 
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We had better make it clear at this stage that our discussion of 
singular coverings is not vacuous: it is a theorem of RUSS that if 
0 < a < 1, then there exists an a-singular covering of I = [0, 1] 
(cf. Beeson, Chapter 4, 6.1).4 

If5 (In) is an a-singular covering of / for some a with 0 < 
a < 1, then the series Y^Lo IAJ does n o t converge constructively. 
Classically, it converges to a nonrecursive real number. 

Lemma 2. If (In) is an a-singular covering of [0, 1], where 0 < 
a < 1, then \In\ -* 0 as n -> oc. 
Proof. Let In = [an, bn], as in the above definition. Given a 
positive integer A:, for each i e { 1 , . . . , / : - 1} choose m,, n,. 
such that £„, = <z„ and a , < ilk < b„ ; then there exists ô > 0 
such that am <y <bn whenever 1 < / < k-1 and \y-i/k\ < ô. 
Let 

N = maxfmj, «j , m2, n2, ... , m ^ , nk_x}> 
and consider any integer n > N. Property (i) of a singular cov­
ering ensures that p(i/k, In) > ô for / = 1, . . . , / : — 1 ; hence, 
for each such /, either an > i/k or an < ijk. It follows that 
0 < an < l/k, or i/k < an < (i + l)/k for some i with 
1 < / < /c-2, or art > (k-l)/k. In the first case, as p{l/k, In) > 
0, we must have In c [0, l/k)\ similarly, in the second case 
In c (i/k, (/ + \)/k) ; and in the third, In c ((fc - \)/k, 1]. So in 
all cases, \In\ < l/k. ü 

Given an a-singular covering ([an, bn]) of / = [0, 1], where 
0 < a < 1, and a sequence (cn) of real numbers, we construct 
an associated canonical function ƒ : / —• R as follows. For each 
natural number n, let fn be the uniformly continuous map of 
[an, bn] onto / such that 

fn(x) = Oifp(x9[an,bH])>09 

fn(lK + bn))=l> a n d 

fn is linear on each half of [an, bn]. 

We claim that ƒ = Y^o c
nfn ^ a well-defined function on / , 

and that it is pointwise continuous on / . To see this, consider 
any x in / . If x < b0, then, by properties (i) and (ii) of a 

4An a-singular covering of the classical interval [0,1] is clearly impossible; 
but there exist a-singular coverings of the set of recursive real numbers in the 
classical interval [0, 1]. 

throughout this paper we shall use (In) as a shorthand for (In)^L0 . 
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singular covering, fn(y) = 0 for all n > 1 and all y e I such that 
\x - y\ < b0 - x ; so f(y) = c0f0(y) for all such y ; whence ƒ is 
pointwise continuous at x. If 0 < x < 1, then, choosing M, N 
such that bM = a^ a nd aM < x < bN, we see from property (i) 
of a singular covering that fn(x) = 0 for all n other than M and 
TV; then /(y) = cMfM{y) + ^ /^(y) for all y in (aM, bN) ; so 
again ƒ is defined and pointwise continuous at x. Finally, the 
case ax < x is handled similarly to the case x < b0. 

Note that f(x) = cnfn(x) for any x in [an, è j ; that f{an) = 
ƒ(*») = /«(O = /«(*«) = ° » a n d h e n c e t h a t i f t h e seQuence (cn) 
is bounded, then so is the function ƒ . 

Theorem 2. Lef (In) be an a-singular covering of [0, 1], w/zere 
0 < a < 1, <z«d let (cn) be a sequence of real numbers. Then 
the canonical function associated with (In) and (cn) is Lebesgue 
integrable if and only if the series ]C^l0|cJ \In\ is convergent 

Proof. Let ƒ be the canonical function in question. As we ob­
served above, ƒ is pointwise continuous. Suppose that ƒ is 
Lebesgue integrable; then \f\ is Lebesgue integrable. So, given e 
with 0 < e < 1/8, we can use Bishop-Bridges (Chapter 7, (3.13)) 
to construct a uniformly continuous function h on I such that 
ƒ |(| f\ - A)| dju < e. Choose a positive integer k such that \h\ < k 
on I ; then for any finite set D of natural numbers, 

(*) E /Viv^e+E^y-

Now let p be a positive integer such that 2/p < e. By Lemma 1, 
we can find a compact integrable set K and a uniformly contin­
uous function g on I such that K c I, fi(I - K) < e/k, and 
||ƒ| - g| < c/p on A:. Let ô > 0 be such that \g(x) - g(y)\ < 
1/16/7 whenever x, y e I and |x - j>| < <J. By Lemma 2, there 
exists N such that |7J < ô/2 for all « > N. Consider any 
n>Nfor which \cn\ > l/p and ƒ„ n K is nonvoid, and let 
x e InnK. Either |/(x)| > 7|cJ/16 or |/(x)| < 9|cJ/16. In 
the first case, let y be a point of In such that \f(y)\ < |cj/16, 
choose ô' > 0 so that | |/(z)| - \f(y)\ \ < \cn\/l6 whenever z el 
and \z -y\ <S' 9 and suppose that there exists z e K such that 
\z-y\ < min{^ , ô'). Then as \z-x\<\z-y\ + \I \ < ô, we 
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have 

11/(*)| - I/(y)l I < I \f(x)\ - g(x)\ + \g(x) - g(z)\ 
+ \g(z)-\f(z)\\ + \\f(z)\-\fly)\\ 
<\cn\(a+ l/16 + e+ 1/16) 
< 3|cJ/8 
<II/(*)I-I/Ü0IU 

a contradiction. Hence |y - z| > min{^<5, ô'} for all z in K, so 
y 6 I - A .̂ It follows from elementary geometry, with reference to 
the definition of the function ƒ , that In-K contains a union of 
two disjoint intervals, each of length |/J/32 ; see Figure (a) below. 
Similarly, if \f(x)\ < 9|cJ/16, then In - K contains an interval 
of length |7W|/16 ; see Figure (b). 

Now, for any n > N such that \cn\ > l/p, either |/J/16 > 
H{In - K) or fi(In - K) > | /J/32. In the former case, InnK 
must be empty, by the foregoing, so ju(In - K) = |/n| > |/n|/16—a 

c„l/16 1 
7lc„l/16 

Two disjoint intervals, each of length I /J/32, contained 'mIn-K 

FIGURE (a). xeInf)K, \f(x)\ > 7|cJ/16. 

151 c„l/16 

9lcJ/16 

An interval of length \ln 1/16, contained in In - K 

FIGURE (b). xeIHnK, \f(x)\ < 9|c„|/16. 
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contradiction. Thus if D is a finite set of natural numbers such 
that n > N and \cn\ > l/p for each neD, then 

E \Jn\ < 32 2>(/„ - * ) < 32JI(/-*) < 32a/*, 
n€D n€D 

and therefore, by (*), 

n£D n6DJ 

Now consider integers ; > i>N. Partition the set {/ + 1, / + 
2, ... , j} into disjoint subsets D, E such that \cn\ > l/p if n € 
D, and \cn\ < 2/p if n € E. Then 

E w w ^ w w + Eww 
<2(33e) + (2/p)£|/J 

< 66fi + ea 
<67e. 

As e is arbitrary, it follows that the sequence of partial sums of 
the series J^o \cn\ \In\ is a Cauchy sequence; whence that series 
converges. 

Conversely, suppose that the series ££LolcJI7J converges. 
Then the series 

OO /» -j OO 

converges; so, by the definition of "integrable function," ƒ = 
527=o cnfn i s Lebesgue integrable. D 

A sequence (cn) of real numbers is eventually bounded away 
from 0 if there exist S > 0 and a positive integer N such that 
\cn\>ô for all n>N. 

Corollary 1. Let (In) be an asingular covering, where 0 < a < 
1, and let (cn) be a bounded sequence of real numbers that is 
eventually bounded away from 0. Then the canonical function 
associated with (In) and (cn) is bounded, pointwise continuous, 
but not Lebesgue measurable. 

Proof We have already shown that ƒ is bounded and pointwise 
continuous. Suppose it is Lebesgue measurable and therefore, be­
ing bounded, Lebesgue integrable. Then, by Theorem 2, the series 
E^Lo \cn\ \Jn\ i s convergent. Choose ô > 0 and a positive integer 
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N such that \cn\ > Ô for all n > N. Then as \In\ < ô~~l\cn\ \In\ 
for all such n, the series Y%Lo IAJ converges, which is absurd. D 
Corollary 2. In RUSS there exist functions g, G on I = [0, 1] 
such that 

(i) g is bounded, pointwise continuous, and not Lebesgue mea­
surable; 

(ii) G is pointwise differentiable and satisfies a Lipschitz con­
dition; 

(iii) G' = g. 
Proof Let (In) be an a-singular covering of 7 = [0, 1], where 
0 < a < 1, and set 

*A) = A) > ^1 S 1 > CQ = Cj = U . 

For any integer n > 2, let Z2w_2 and J2n_{ be the left and right 
halves of In , respectively, and let c2n_2 = -cln_x = 1. It is easy to 
show that (/m)^>

==0 ^ s a n ^-singular covering of [0, 1]. As (cn) is 
bounded, the canonical function g associated with (Jm) and (cm) 
is bounded; also, by Corollary 1, g is pointwise continuous but 
not Lebesgue measurable. For each n, g is uniformly continuous 
on I and satisfies ƒ xT g dfi = 0. Consequently, for each «, the 
function Gn , denned by 

Gn{x) =0 if x € I and p(x,In)>0, 

= ƒ g if x e In = [an,bn], 

is uniformly continuous and pointwise differentiable on I ; also, 
for each x e I, G'n{x) = g(x) if x e In , and G'„(x) = Gn(x) = 0 
if p(x, ƒ„) > 0. An argument similar to that used before Theorem 
2, in our discussion of canonical functions, now shows that G = 
D^to Gn *s poiîrtwise differentiable, that G' = g on I, and that 
G = Grt on 7W. As G is uniformly continuous on / , to prove 
that it satisfies a Lipschitz condition it will suffice to show that if 
x e Im = [am, bm] and y e In = [an, 6 J , where m < n, then 
|G(;y) - G{x)\ < \y - x\. If m = n, then, as |g| < 1, 

I /*y M I I ry I 
ƒ S - / S = / S < |J>-*I-

\Jam Jam | M* I 
If m < «, then, as G(aw) = G(bm) = 0, we have 

|G(y) - G(x)| < \G(y) - G(a„)| + |G(ftw) - G(x)\ 

= y~an + an-bm + bm-x 
= y-x = \y-x\. ü 

\G(y)-G(x)\ = 
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Theorem 2 first appeared in Demuth's unpublished doctoral the­
sis [Demuth 1964], and was rediscovered recently by Bridges. Note 
that our construction of a bounded, pointwise continuous function 
that is not Lebesgue measurable, and our proof that the function 
has that property, are simpler than their counterparts in Kushner 
(Chapter 8, Theorem 10), which seems likely to become the stan­
dard reference for RUSS in the west. 

In this context it is appropriate to mention, without proof, some 
related results in RUSS: 

Theorem 3. In RUSS, there exists a function which satisfies a Lip-
schitz condition on [0, 1], but is not differentiable at any point of 
[0, 1] [Demuth 1969a]. D 

A function ƒ on a closed interval [a, b] in R is absolutely 
continuous if for each natural number n there exists a piecewise 
linear function pn such that 

m - l 

£i(/-/g(*fc+1)-(/-p«)(**)i^2~" 

whenever a < x0 < x{ < • • • < xm < b. 

Theorem 4. In RUSS, if F is an absolutely continuous function on 
[0, 1], then there exists a full set A such that F is differentiable 
at any point of A1 n (0, 1) [Demuth 1968]. D 

Theorem 5. In RUSS, the following are equivalent conditions on a 
function ƒ defined on [0, 1]: 

(i) ƒ is Lebesgue integrable; 
(ii) there is an absolutely continuous, pointwise differentiable 

function F on [0, 1], such that Ff(x) = f(x) for each x 
in (0, 1) [Demuth 1965]; 

(iii) there exist an absolutely continuous function F, and a 
full subset A of [0, 1], such that for each x in A1 n 
(0,1), F is differentiable at x and Ff(x) = f(x) [De­
muth 1969b]. D 

We turn, finally, to Lebesgue measurability within INT. In the 
case of Lebesgue measure on Rn, our next theorem is found in 
Heyting [6.2.2, Theorem 1]; our proof is neater and more general 
than Heyting's. 
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Theorem 6. In INT, if IJL is a positive measure on a locally compact 
space X, then every real-valued map defined on a full subset of X 
is measurable with respect to ju. 
Proof It will suffice to prove that if F is a full subset of X, ƒ a 
mapping of F into R, A an integrable set with positive measure, 
and e > 0, then there exist an integrable set K and a test function 
g such that Kl c A1, /u(A -K)<e9 and f(x) = g(x) for all 
x in Kl. To this end, note that 5 = (A1 n F , ^° n F) is an 
integrable set, with pt(B) = fi(A). Construct a compact integrable 
set K such that Kl c Bl c A1 and //(̂ f - K) = //(£ - AT) < e. 
In view of UC, we see that ƒ is uniformly continuous on A^1. 
To complete the proof, we need only use the Tietze Extension 
Theorem [Bishop-Bridges, Chapter 4, (6.16)] to construct a test 
function g: X -» R such that f(x) = g(x) for all x in K1. D 

It follows from Corollary 2 and Theorem 6 that, as was stated 
more formally in Theorem 1, we can neither prove nor disprove, 
within BISH alone, that every bounded, pointwise continuous 
function on [0, 1] is Lebesgue measurable. 

Finally, we refer the interested reader to pp. 63-64 of Bridges-
Richman, for the construction, within RUSS, of a compact subset 
of [0, 1] that is not Lebesgue measurable. 
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