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Many phenomena involving nonlinear wave motion fit into the 
mathematical framework of the so-called "hyperbolic systems of 
conservation laws." These are systems of nonlinear partial differ­
ential equations which describe the conservation of certain physi­
cal quantities, e.g., mass, momentum, energy, etc. The equations 
take the form div <f>(u) = 0, where the divergence is with respect to 
the space-time independent variables, and ^ is a nonlinear func­
tion of the unknown state variable u. 

The most mathematically well-understood case is that of one 
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spatial variable, and here the equations take the form of an n x n 
system. 

du dflu) n du At x d u A 

where u = u(x, t) is an «-vector, and A(u) is the Jacobian ma­
trix of ƒ . The system (1) is called hyperbolic if A has n real 
eigenvalues kt = kt(u), / = 1, 2, . . . , n , and is strictly hyperbolic 
if the Af. are all distinct. The kt are the wave speeds, or char­
acteristic speeds, and they govern the propagation of infinitesimal 
disturbances. An important problem is to solve these equations 
subject to prescribed initial conditions on the state variable u. 
That is, one is given "initial data" (u at t = 0), 

(2) K ( X , 0 ) = u0(x), 

and it is required to solve the "initial-value problem" (1), (2) in the 
region t > 0. The most interesting phenomenon associated with 
this problem is the necessary occurrence of solution singularities 
— in fact, smooth ƒ and smooth data u0 often do not even allow 
smooth solutions! This is due to the fact that jump discontinuities 
(shock waves) form spontaneously in the solutions. 

In the simplest case of a single equation (n = 1), nonlinear 
waves travelling at different speeds cannot interact, and as a result, 
the mathematical theory for the problem (1), (2) is in good shape. 
This is mainly due to the pioneering work of E. Hopf [3] and 
O. A. Oleinik [7]. As soon as n exceeds one, however, we en­
ter into the field of systems of conservation laws, and the subject 
becomes both richer and far more complicated. 

Because of the formidable mathematical difficulties associated 
with the general initial-value problem (1), (2), much attention has 
been given to problems having certain special features, like spec­
ifying a particular form of ƒ , and/or uQ . As the title indicates, 
the book under review is concerned with just such things. In fact, 
the phrase "Riemann problem" is the jargon in the field for initial 
data u0 of the following form: 

m ( \ / w £ ' x < 0 

(3) uo(x) = i ^ n 
( uR, x > 0, 

where uL and uR are constant «-vectors. Now at first glance, 
one might be somewhat surprised at this — really? An entire 
book devoted to this very special problem? The answer is that 
this very special problem has so far been the most important one 
in the entire field because its solutions serve as "building blocks" 
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for solving problems with more general initial data. Indeed, the 
understanding of solutions of the Riemann problem has served to 
clarify the entire field, and to allow great advances to be made 
in understanding both qualitative and quantitative questions for 
much more general problems. Let me give just a few examples. 
Thus, in Lax's important early study of the Riemann problem [5], 
one finds for the first time, all of the basic notions in the field. 
Moreover, Glimm's fundamental paper [1], where the problem (1), 
(2) is solved for general ƒ by a "random-choice" method, is based 
on a deep study of Riemann problems and how their solutions 
interact. The Riemann problem solution also contains the large 
time asymptotics for solutions for a wide class of initial data u0 , 
as was shown by Liu [6]. Finally, the Riemann problem has also 
served as a testing ground for the important area of the numerical 
analysis for solutions of (1), (2). (Here, however, my own feeling 
is that many workers have put far too much weight on how one 
particular difference scheme approximation fares against another 
one, where the test in both cases is made merely on solutions of 
the Riemann problem for a scalar equation, usually the "Burgers" 
equation, ut + (u2/2)x = 0 — more about this later.) 

The Riemann problem (1), (2) actually arises in an important 
physical problem, first studied by Riemann, which is worth describ­
ing. Thus, consider a gas confined to a "long" and "thin" tube (so 
it can be modelled by a single spatial variable x, -oo < x < oo), 
having a thin membrane partitioning the tube into two regions, 
x < 0 and x > 0. In this model, the state vector u = (p, E, v) 
is three dimensional, representing, respectively, the density, en­
ergy, and velocity of the gas, and uL and uR denote two different 
constant states of the gas at rest (vL = 0 = vR), on both sides of 
the membrane. At time t = 0, the membrane 

uL HR_ 
x = 0 

is broken, and the problem is to describe the ensuing motion of 
the gas. By specializing ( 1 ) to the gas dynamics equations (which 
describe the three conservation laws of mass, momentum, and en­
ergy), one immediately sees that the mathematical description of 
this problem leads to a Riemann problem. It is well known that 
much of the early work on nonlinear wave motion was done by 
Riemann, whose ideas were based on the problem that now bears 
his name. 
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Since the equation (1) and the initial data (3) are invariant un­
der the change of scale 

(x, t) —> (ox, at), 

one is motivated to seek solutions of the Riemann problem which 
are functions of the single variable £ = x/t. Thus, as was shown 
by Lax [5], the solution will consist of elementary waves, called 
shock waves, rarefaction waves, or contact discontinuities, and for 
an n x n system, the general solution will consist of n waves, sep­
arated by wedges in which u takes constant values. For example, 
in Figure 1, for two equations, there are three wedges and one new 
constant state uM . The elementary waves are defined by solutions 
of either ordinary differential equations or algebraic equations in 
the state space u. 

The solution just sketched is valid for the gas dynamics equa­
tions, where the flux function ƒ is "genuinely nonlinear" (in a 
sense discovered by Lax [5]), and the system is strictly hyperbolic. 
However, one or both of these conditions may fail to hold in sev­
eral important systems which arise in chemistry, elasticity, mag-
netohydrodynamics, and oil reservoir applications, to name but a 
few. (I should remark that the topic of when only genuine non-
linearity breaks down, but strict hyperbolicity is preserved, is dis­
cussed in the book under review.) In the more degenerate cases, 
the above picture is too simple, and many complications arise. 
For example, rarefaction waves with embedded shocks may occur, 
and degenerate wave speeds Xk - Àk+l may occur on an open 
set in w-space. Furthermore, the degeneracy set may occur on 
a boundary between hyperbolic behavior (all kk real) and elliptic 
behavior (certain Xk occurring in complex conjugate pairs). Much 
good work has been done in the last 10 years or so, with a goal 
toward classifying and understanding the allowable discontinuities 
in these cases; see [4]. 

There is another important reason for studying Riemann prob­
lems which can now be described; namely, knowing how to solve 

t ' 
shock _ ^ N . s rarefaction 
w a v e x . u=u*. SO^ +^ wave 

FIGURE 1 
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Riemann problems allows one to understand the interaction of 
shock waves. For example, if we take initial data u0 consisting 
now of three constant states 

{ uL, x < a 

uM, a<x<b 

uR, x >b, 

where the two corresponding Riemann problems with data 
(uL, uM) and (uM> uR) are each resolvable by a single shock 
wave, then the problem (1), (4) leads to an interaction of shock 
waves (the overtaking of one shock wave by another), as depicted 
in Figure 2. 

From the picture, it follows that at time t = t{, we are again 
confronted with a Riemann problem, with data (uL> uR). We 
thus see that if we can resolve Riemann problems, then we can 
resolve certain interactions of nonlinear waves. It is my opinion 
that workers studying difference scheme approximations to con­
servation laws ought to test their methods on problems which in­
volve wave interactions, and not merely on Riemann problems. 
(Of course, there are some researchers who are already putting 
these ideas into practice — for example, Glimm's "front-tracking" 
scheme [2] is practically defined in terms of wave interactions.) 

The book under review consists of four chapters. In the first 
chapter the Riemann problem for a scalar conservation law is con­
sidered in great detail for general nonconvex ƒ . There is also 
included a discussion of Lax's general solution of the Riemann 
problem for strictly hyperbolic systems, where \uL - uR\ is suf­
ficiently small. The next chapter consists of a study of a model 
problem of two equations (insentropic gas dynamics), including 
a discussion of the interaction of elementary waves. A proof of 
Glimm's existence theorem is also outlined. An exhaustive discus­
sion of a perturbed Riemann problem is also included. In Chapter 
3, the full system of gas dynamics equations is considered. This 

z shock waves \ 
t=t 
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chapter is fairly difficult to read, as certain things are unmotivated 
(for example, the important Hugoniot relation on page 98 is just 
stated out of the blue!), and the reader is also confronted with the 
jungle of details in the "non-convex" case. (It would be much bet­
ter for the nonexpert to first study the less general "convex" case.) 
Furthermore, I was unable to find a precise statement of the solu­
tion of the Riemann problem. The final chapter is concerned with 
flows in two space dimensions. Here the authors give a discussion 
of the scalar conservation law, together with some miscellaneous 
results for systems: overtaking of shocks in steady flow, and planar 
shock diffraction; furthermore, the problem of Mach and regular 
reflection is stated. 

This book is not for beginners — rather, it is more of a research 
monograph written for people who already have some understand­
ing of the field. The text has a few places where results are prefaced 
with "it can be shown that," and proofs are omitted but no ref­
erences are given. Perhaps the most glaring omission in the book 
is any mention of the important result of R. Smith [8], who first 
showed for the Riemann problem in gas dynamics that unique­
ness of the "entropy" solution is lost unless the equation of state 
satisfies some additional condition. 

The subject of systems of conservation laws is a difficult one, 
and any text is a welcome addition to the literature. All in all, the 
book is a good one and the authors are to be commended for their 
efforts in making these ideas more widely accessible. 

REFERENCES 

1. J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equa­
tions, Comm. Pure Appl. Math. 18 (1965), 95-105. 

2. J. Glimm, C. Klingenberg, O. McBryan, B. Plohr, D. Sharp and S. Yaniv, 
Front tracking and two dimensional Riemann problems, Adv. Appl. Math. 
6(1985), 259-290. 

3. E. Hopf, The partial differential equations ut + uux = juuxx , Comm. Pure 
Appl. Math. 3 (1950), 201-230. 

4. B. Keyfitz and H. Kranzer, eds. Nonstrictly hyperbolic conservation laws, 
Contemp. Math., vol. 60, Amer. Math. Soc, Providence, R.I., 1987. 

5. P. D. Lax, Hyperbolic systems of conservation laws, II, Comm. Pure Appl. 
Math. 10(1957), 537-566. 

6. T. P. Liu, Large-time behavior of solutions of initial and initial-boundary 
value problems of a general system of hyperbolic conservation laws, Comm. 
Math. Phys. 55 (1977), 163-177. 

7. O. A. Oleinik, Discontinuous solutions of nonlinear differential equations, 
Uspekhi Mat. Nauk. (N.S.) 12 (1957), 3-73. (English Translation in Amer. 
Math. Soc. Transi. Ser. 2, 26 95-172.) 



234 BOOK REVIEWS 

8. R. Smith, The Riemann problem in gas dynamics, Trans. Amer. Math. Soc. 
249(1979), 1-50. 

J. A. SMOLLER 

UNIVERSITY OF MICHIGAN 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 24, Number 1, January 1991 
© 1991 American Mathematical Society 
0273-0979/91 $1.00+ $.25 per page 

Modular forms, by T. Miyake. Springer-Verlag, Berlin, New York, 
1989, 335 pp., $73.00. ISBN 3-540-50268-8 

Modular forms have been studied, accidently or intentionally, 
for about 200 years, beginning seriously with Jacobi and Eisen-
stein. A key word here is "accidentally": Historically, many pe­
culiar things were discovered and studied in an ad hoc fashion; a 
great number of these are now construed as corollaries of a general 
phenomenology with the unfortunately unevocative appellations 
"theory of modular forms" or "theory of automorphic forms." 
This "underlying phenomenology" is distant from more tangible 
and elementary issues, and so often seems obscurely technical and 
tiresomely unmotivated (to the uninitiated, at least). 

Because it does provide an underlying pattern, the subject is 
currently of intense research interest. Either provably or conjec-
turally, a large fraction of the objects of interest in number theory 
is intimately related to modular forms. There are also pleasantly 
surprising connections with many other things: string theory, com­
binatorics, Kac-Moody algebras, and so on. 

To develop a sympathy for the subject, it seems necessary to 
shift what one believes to be the primary objects of study. Because 
of the efficacy of "the theory of modular forms" as a methodology 
in number theory, one might study modular forms as fundamental 
objects, rather than directly consider number fields themselves (for 
example). To add to the confusion of the novice, there is not 
a single fixed notion of "modular form": The general idea has 
many different incarnations, whose common spirit is apparent only 
after considerable reflection (and proof). Yet, each incarnation of 
"modular form" has its own utility. 

With just a few exceptions, the subject languished for the first 
half of this century. Its resurrection in the late 1950s and early 


