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the complex Monge-Ampère operator. By first studying general 
capacity set functions, the author focuses attention on the analytic 
problems that arise in proving important properties of the capac­
ity, such as continuity under decreasing limits of compact sets. 
The continuity of (ddcu)n under bounded, monotone limits of 
plurisubharmonic functions is proved, as is the equivalence of neg­
ligible sets (with respect to plurisubharmonic functions), pluripolar 
sets, and sets of capacity zero. Other interesting applications are 
given to the study of the (pluri-) Green function and Siciak's global 
extremal function, the analogue of the Green function with pole 
at infinity in one complex variable. 

The major shortcoming of the book is that it does not supply 
any outline or overview of the subject. There should have been 
some introductory material in each chapter that calls attention to 
the main results and the direction one takes to prove them. Also, I 
did not find any strong connection between the last three chapters 
and the topics discussed in the first nine chapters. A surprising 
omission in a book on capacities in several complex variables is 
that there is no mention of some of the most interesting and im­
portant new capacities, such as the projective capacities studied by 
Sibony and Wong and by H. Alexander, and the capacity associated 
with the "transfinite diameter," studied by Siciak and Zaharjuta. 
Of course, it is impossible to have everyone's favorite topics in 
such a short monograph. 

Since these notes are lecture notes from courses given by the au­
thor, it is perhaps not surprising that there are many typographical 
errors in them. However, I found no serious errors. All in all, I 
think this book is a good source for obtaining an introduction to 
a new and interesting subject. 
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Which processes in analysis and physics preserve computabil­
ity, and which do not? In order to answer this question, after an 
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outline of the necessary minimum of recursion theory, the authors 
introduce concepts of effective convergence, computable sequence 
of real numbers, and computable sequence of functions. 

Let X be a Banach space, (xnk) a double sequence in X, and 
(xn) a sequence in X. We say that xnk -• xn effectively in k and 
n as k —• oo if there exists a recursive function e: NxN —• N such 
that \\xnk -xj < 2~N for all « and JV, and all k>e(n,N). 

A computable sequence (rn) of rational numbers is characterized 
by three recursive functions a, b, and s from N to N such that 
for all n, b(n) ^ 0 and rn = (-\)si"n)a{n)lb{ri) ; computable dou­
ble sequences are defined here, and later in an abstract setting, in 
terms of computable sequences, using standard pairing bisections 
from N x N onto N . A computable sequence (xn) of real num­
bers is defined by a computable double sequence (rnk) of rational 
numbers such that rnk —• xn effectively in k and n as k —• oo. A 
computable real number, or recursive real number, is a real number 
x such that the sequence (x, x, . . . ) is computable; the terms of 
a computable sequence of real numbers are, of course, computable 
as real numbers. Corresponding notions of computability involv­
ing complex numbers are introduced in the obvious way, using real 
and imaginary parts. 

It is a simple consequence of the effective enumerability of the 
set of all partial recursive functions on N that the set of all com­
putable real numbers is countable [Ro, Chapter 1, Theorem I]; 
whence there exist uncountably many noncomputable real num­
bers. 

A computable sequence of real functions is a sequence (fn) of 
functions from R to R such that: 

For each computable sequence (xk) of real num­
bers, the double sequence (fn(xk)) of real num­
bers is computable; and 

There exists a nonvanishing recursive function 
d: N3 —• N such that for all m, n , and N, and 
all x, y e [-m, m], 

\x-y\< l/d(m,n,N)=>\fn(x)-fn(y)\<2-N. 

A similar definition applies to the notion of a computable se­
quence of functions fn: I —• R, where / is a compact interval with 
recursive endpoints. If / is such an interval or R itself, then a 
computable real-valued function on ƒ is a function ƒ: I -> R such 
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that the sequence ( ƒ , ƒ , . . . ) is computable. Such a function ƒ 
is effectively uniformly continuous on each compact subinterval / 
of I with recursive endpoints, in the sense that there exists a non-
vanishing recursive function d:N —• N such that for all x,y in 
/ and all N, 

\x-y\< l/d(N) =» \f(x) - f(y)\ < 2~N. 

If (fn) is a computable sequence of functions on I, then each fn 

is a computable function. 
Since the appearance of Turing's seminal paper in 1936 [Tu], 

and the subsequent development of the notions of computabil-
ity described above, a number of interesting results have been 
obtained in the theory of computability in elementary analysis. 
Among these are: 

Specker's theorem. There exists a strictly increasing computable 
sequence (rn) of rational numbers in [0, 1] that is eventually 
bounded away from any recursive real number [Sp; BR, Chapter 
3,(3.1)], 

and 

Myhill's theorem. There exists a computable function ƒ:[(), 1] -> 
R that is C and twice differentiate, whose derivative f' is not a 
computable function. 

A restricted version of the latter was first proved in [My]. 
Where Pour-El and Richards have broken new ground is in the 

theory of computability in Banach spaces, which they approach 
axiomatically using the notion of a computability structure: that is, 
a pair (X, S?) consisting of a Banach space X and a nonempty 
set S? of sequences in X, satisfying the following axioms. 

Axiom 1. If (xn) and (yn) are in S?', ( a^ ) and (Pnk) are com­
putable double sequences of real or complex numbers, and d: N —> 
N is a total recursive function, then the sequence with nth term 

d{n) 

Y,^ankxk + Pnkyk) 
k=0 

is in S?. 

Axiom 2. If (xnk) is a double sequence in 5? such that xnk -» xn 

effectively in k and n as k -> oo, then (xn) eS*. 
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Axiom 3. If (xn) e S*, then (\\xn\\) is a computable sequence of 
real numbers. 

The elements of S? are called the computable sequences of the 
structure, and S? is also described as a computability structure for 
the Banach space X. 

It follows easily from the axioms that the sequence ( 0 , 0 , 0 , 
. . . ) belongs to S?, that a recursively indexed subsequence of an 
element of 5? is in S?, and that the sequence obtained by inter­
lacing two elements of 5? is in S?. 

To each of the standard Banach spaces that are studied in ana­
lysis, there corresponds a natural intrinsic computability structure. 
For example, if a and b are computable real numbers, then the 
intrinsic computability structure for the Banach space C[a, b], 
with the uniform norm, consists of all sequences of functions from 
[a, b] to R that are computable according to the elementary def­
inition given earlier. For another example, a sequence (fn) of 
functions in LP(R) (p ^ oo) is Ü-computable if there exists a 
computable double sequence (gnk) of continuous functions from 
R to R such that the support of gnk is contained in [-k, k], 
and such that \\fn - gnk\\p -> 0 effectively in k and n as k —• oo ; 
the set of Lp -computable functions constitutes the intrinsic com­
putability structure on LP(R). 

A computability structure (X, S?) is effectively separable if 
there exists an element (en) of S?—called an effective generating 
set for (X, S?) or, loosely, for X—whose linear span is dense in 
X. The monomials 1, x, x2, . . . , and the set of all step func­
tions with rational values and jump points, form effective generat­
ing sets for the intrinsic computability structures on C[0, 1] and 
LP(R), respectively. 

The definition of effective generating set does not require that 
the linear span of (en) be effectively dense in J ? \ in any natural 
sense; but the effective density of (en) is a fundamental conse­
quence—the effective density lemma—of the authors' definition of 
computability structure. The effective density lemma has some 
interesting applications. For example, by applying it to C[0, 1] 
and the effective generating set {1, x, x , . . . } , we immediately 
obtain an effective version of the Weierstrass approximation the­
orem; and by applying it the information about Ll(R) provided 
by the classical Wiener Tauberian theorem, we obtain an effective 
version of that theorem. In a slightly different vein, the effective 
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density lemma enables us to show that if two computability struc­
tures on X have a common effective generating set, then they have 
the same set of computable sequences (the stability lemma). 

The material we have discussed so far belongs to the second of 
the three parts in which this book is divided; the first part com­
prises two preliminary chapters that cover computability in analy­
sis from first principles—that is, in a nonaxiomatic fashion. The 
remainder of the second part deals with the first of the authors' 
two main theorems and their consequences. 

The first main theorem establishes a link between boundedness 
and the preservation of computability for closed linear operators 
between Banach spaces: 

Let T be a closed linear mapping between Ba­
nach spaces X and Y with computability struc­
tures, and suppose there exists an effective generat­
ing set (en) for the computability structure on X, 
such that the sequence {Ten) is computable in Y. 
Then T maps computable elements of its domain 
to computable elements of Y if and only if T is 
bounded. 

The main part of the proof actually provides an algorithm which, 
applied to an unbounded operator T satisfying the hypotheses, 
constructs a computable element x of the domain of T such that 
Tx is not a computable element of Y. 

A corollary of the first main theorem is that a bounded closed 
linear mapping T: X —• Y (whose domain is the entire Banach 
space X) maps computable sequences in X to computable se­
quences in the Banach space Y. 

The authors give many interesting applications of their first 
main theorem, among which are simple proofs of results proved 
by more elementary and intricate methods in earlier chapters. Of 
particular interest is their discussion of noncomputable solutions 
of the three-dimensional wave equation 

(1) V2M = MW, U{x90)=f(x), K , ( X , 0 ) = 0 , 

where x ranges over the cube [—1, l]3 c R3, 0 < t < 2, and the 
initial function ƒ is defined and continuous on the cube [-3, 3] 
c R3. The classical solution of (1), under these physically mean­
ingful conditions on the domains involved, is given by Kirchhoff's 
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formula [cf. Pe, page 80] 

u(x ,t)=ll [ ƒ (x + tn) + tV ƒ (x + tn) • n]dS(n), 
J -/unit sphere 

where dS(n) is the area measure on the unit sphere, normalized 
so that the total area of the sphere is 1. The authors show that for 
fixed t, the unbounded operator 

ƒ » II [ƒ(• + tn) + tVf(. + tn) • n]dS(n) 
J «/unit sphere 

is closed, and maps monomials in x, y and z to computable ele­
ments of the range of T ; since those monomials form an effective 
generating set for the computability structure under consideration, 
it follows immediately from the first main theorem that there ex­
ists a computable continuous function ƒ such that the solution 
M(x, 1) of (1) at time t = 1 is a continuous, but not computable, 
function of x. 

This result is a good illustration of the power of the first main 
theorem, made available by the authors' very general notion of a 
computability structure. Further evidence of the advantage of this 
generality is revealed in the same context: The authors show that, 
relative to a natural computability structure associated with the 
energy norm ||w(x, t)\\ = sup, \E(u, 01 ? where 

E(u, tf = III3[|Vw|2 + (du/dt)2]dx, 

the solution of the wave equation ( 1 ) with computable initial data 
is computable on R3 x [ -M, M], where M is any positive recur­
sive real number. 

The third and final part of the book deals with the computabil­
ity theory of eigenvalues and eigenvectors for a closed operator 
T:H —• H, where H is an effectively separable Hilbert space 
and T is effectively determined: That is, for some computable 
sequence (en) in H, the ordered pairs (en, Ten)(n = 1,2. . . ) 
form an effective generating set for the graph of T relative to its 
natural computability structure; in which case the sequence (en) 
is an effective generating set for H. The authors' fundamental 
result on eigenvalue theory is their second main theorem, of which 
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the following is the more interesting part: 
Let T be an effectively determined self-adjoint op­
erator on an effectively separable Hubert space H. 
Then there exist a computable sequence (Àn) of real 
numbers, and a recursively enumerablel set A c N 
such that 

(i) the spectrum of T is the closure of {Àn: e N}; and 
(ii) the set of eigenvalues of T is {An: n e N\A}. 

The proof of this theorem occupies most of the 40-odd pages in the 
final chapter of the book, and includes algorithms, with proofs of 
their correctness, for the computation of the sequence (Aw) and 
the effective enumeration of the recursively enumerable set A. 
Rather than dwell on that proof, I prefer to describe some of the 
interesting results associated with the theorem itself. 

First, although, by the theorem, the individual eigenvalues of 
an effectively determined self-adjoint operator T on an effectively 
separable Hubert space H are computable, the sequence of eigen­
values need not be computable, even if T is bounded; but if 
T is compact, then the sequence of eigenvalues is computable. 
Secondly, there exists an effectively determined bounded opera­
tor T on L2[0, 1], one of whose eigenvalues is a noncomputable 
real number. Thirdly, the eigenvector theorem asserts that there 
exists an effectively determined compact self-adjoint operator on 
L [0, 1] for which 0 is an eigenvalue of multiplicity 1 and none 
of the corresponding eigenvectors is computable. In each of the 
last two results, L [0, 1] is taken with its intrinsic computability 
structure. 

The proof of the eigenvector theorem is of especial interest: The 
authors first establish the result relative to an ad hoc effectively sep­
arable computability structure on L2[0, 1] ; they then prove that 
any two effectively separable computability structures on a Hubert 
space are isomorphic, and use this isomorphism to complete the 
proof of the full form of the eigenvector theorem. To illustrate 
the dependence of their arguments on the context of a separable 
Hubert space, the authors also give examples of nonisomorphic 
effectively separable computability structures on the Banach space 

A subset A of N is recursively enumerable if either A — 0 or there is a 
computable function from N onto A (that is, an effective listing of the elements 
of A). 
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Having given some idea of the flavor of the book, I now turn 
to the following remark in the authors' "Addendum: Open Prob­
lems." 

• • • the reasoning in this book is classical—i.e. the 
reasoning used in everyday mathematical research. 
This contrasts with the intuitionist approach (e.g. 
of Brouwer), the constructivist approach (e.g. of 
Bishop), and the Russian school (e.g. Markov and 
Shanin). A natural question is: What are the ana­
logs, within these various modes of reasoning, of 
the results in this book? 

The distinction between classical and intuitionistic (construc­
tive) logic is significant in several places in recursive mathematics. 
To illustrate this, consider the proposition: 

(2) Every recursive real number has a recursive binary expansion. 

(A recursive binary expansion of a recursive real number x 
is a total recursive function fx:N —• {0, 1} such that x — 

Y^^fx^
n)^~n •) O n e P ro°f of (2) proceeds like this. Either 

x = p/q for some integers p and q, in which case we obtain the 
wth place of a recursive binary expansion of x by performing, in 
binary arithmetic, as much as is necessary of the long division of 
p by q ; or else x is irrational. In the latter case, there is a recur­
sive procedure which, applied to any rational number r, enables 
us to decide whether x < r or r < x ; using this procedure, and an 
interval-halving argument applied first to an interval containing x 
and having rational endpoints, we can construct a recursive binary 
expansion of x. 

This proof embodies two distinct algorithms, one applicable 
when x is rational, the other when x is irrational. Within the 
framework of classical logic, it is an acceptable proof of the state­
ment we set out to prove: It actually proves the statement in the 
form: 

For each recursive real number x, there exists an 
algorithm which produces a recursive binary expan­
sion of x. 

However, the split into cases used in our proof is not acceptable 
within intuitionistic logic unless we have a procedure for deciding, 
for any given recursive real number x, which of the two cases 
obtains; such a decision procedure would then be adjoined at the 
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start of the above proof to convert it into a fully constructive one. 
Unfortunately, there is no algorithm for deciding whether or not 
a given recursive real number is rational, so there is no possibility 
of converting the above proof into a constructive one. Of course, 
there remains the possibility that there is a totally different proof 
of (2) that is constructive. But this is not the case: It is not hard 
to show that a constructive proof of (2) would convert into one of 
the following proposition, which is false even in classical recursion 
theory [BR, Chapter 3, (1.6)]: 

There is an algorithm which, applied to a binary 
sequence (an) with at most one term equal to 1, 
outputs 0 ifan = 0for all even n, and 1 ifan = 0 
for all odd n. 

Another way of looking at the constructive problem with (2) is 
to note that in the classical proof sketched above, the algorithm 
for computing the recursive binary expansion of x depends on 
x itself: It is not uniform in x . As a rule (which, like all such 
rules, should not be taken as infallible), if classical logic enables 
us to prove that a single algorithm provides certain information 
about all recursive real numbers, then intuitionistic logic will do 
the same, perhaps with some modifications to the input or the 
structure of the actual algorithm. 

For example, if a is a positive recursive real number, then there 
is an algorithm which enables us to decide, for any given recursive 
real number x and using classical logic, whether a > x or x > 0. 
Here is a high-level description of the algorithm: 

Choose a sequence (rn) of rational numbers, and a recur­
sive function ^:N —• N, such that \a - rn\ < 2" when­
ever n > e(N). 

Compute e(N) and r,N, for N = 0, 1, 2, ... , until we 
obtain a value N such that re,N+2, > 2~N. 
Given any computable real number x, compute a rational 
number s such that \x - s\ < 2~N~2. 

Decide whether s < 2~N~l or s > 2~N~l ; in the first 
case, a > x ; in the second, x > 0. 

For the application of this classical algorithm, we only need the 
information that a < 0 is impossible. Using intuitionistic logic, 
we can show that the same algorithm does the same job, provided 
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that the information "a > 0" is given in a positive form: for 
example, a rational number r and a positive integer N such that 
\a - r\ < 2~N-2 and r > 2~N . 

Some people would argue that even constructively this informa­
tion is already embodied in the statement "it is impossible that 
a < 0." The basis of this argument is their acceptance of 

Markov's principle. If P{n) is a decidable property of natural num­
bers n, such that -Wn->P(n), then there exists a value v such that 

which represents a form of unbounded search. The general view, 
however, is that Markov's principle is at best of doubtful signifi­
cance within the framework of intuitionistic logic. 

In connection with the authors' second main theorem, we have 
already observed that, classically, the eigenvalues of an effectively 
determined self-adjoint operator T on an effectively separable 
Hubert space H are computable real numbers but need not form 
a computable sequence. In other words, for each n G N there 
exists an algorithm, depending on n, which computes the nth, 
eigenvalue in an enumeration of the set of all eigenvalues of T ; 
but, for a certain T, there is no uniform algorithm that applies 
to all natural numbers n and computes, from the input n, the 
«th eigenvalue in such an enumeration. This can be shown also 
by modifying the example on pages 20-21 of [Br], to demonstrate 
constructively the impossibility of a uniform recursive algorithm 
for the computation of the eigenvalues of positive compact self-
adjoint operators on a two-dimensional Hubert space. It appears, 
therefore, that the authors' second main theorem, and perhaps 
much of their work on eigenvalues and eigenvectors, will not read­
ily translate into a constructive form. 

If we turn back to the proof of their first main theorem, we find 
that there, too, the constructive interpretation is elusive. In this 
case, the problem is that if an operator T: X —• Y between normed 
spaces is defined constructively, then the elements of its domain 
and range are, of necessity, computable objects; so we cannot have 
the situation where x belongs to the domain of T and Tx is 
not computable. Inspection shows that with the help of Markov's 
principle we can extract from the authors' arguments a proof of 
a cognate constructive theorem; but this theorem seems to have 
little intrinsic merit and no interesting applications like those of 
its classical counterpart. So the question remains: What, if any, 
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are the significant analogues, within constructive mathematics, of 
the first main theorem? 

Now, constructive mathematics is not solely a matter of restric­
tion to recursive objects and intuitionistic logic, although formally 
that is what distinguishes the recursive constructive mathematics 
(RUSS) of the Russian School from classical mathematics [BR, 
Chapters 1 and 3; Ku]. The variety of constructive mathemat­
ics (BISH) advocated by the late Errett Bishop uses intuitionistic 
modes of reasoning, is based on a primitive notion of algorithm, 
and does not confine its attention to recursive objects [Bi, BB]. In 
consequence, every theorem of BISH, suitably interpreted, is also 
a theorem of RUSS and of classical mathematics-, but theorems of 
constructive mathematics that depend on recursive function theory 
are unobtainable within BISH. 

With these comments in mind, I would like to discuss further the 
work of Pour-El and Richards, in [PR] and the book under review, 
on the wave equation. When considered within RUSS, the con­
struction and uniform continuity of the function ƒ that they use 
in [PR] to provide initial conditions leading to a noncomputable 
solution of ( 1 ) create no problems; but the argument they use to 
prove that ƒ is differentiate—in fact, of class C1—depends on 
the term-by-term differentiability of a series of functions under 
conditions that are not sufficient to ensure the applicability of the 
relevant constructive theorem [BB, Chapter 2, (6.10)]. Taken with 
our uncertainty over significant constructive analogues of the first 
main theorem, this raises serious doubts about a constructive coun­
terpart of the authors' nonrecursive solution of (1) with recursive 
initial data. Of course, any such counterpart would be expressed 
in terms of the nonexistence of a solution of ( 1 ) at time t = 1, 
since noncomputable objects cannot be perceived within a rigidly 
constructive framework. 

Another point to note is that if a computable function ƒ leads 
classically to a noncomputable solution u of (1) on the compact 
domains in question, then u is not effectively uniformly contin­
uous [PR, page 237, Proposition]; in particular, the solution is 
weak—that is, not of class C2 . 

Contrast this with what happens in BISH: In that framework, 
if the function ƒ is uniformly and continuously differentiate 
on the appropriate compact domain in R , then Kirchhoffs for­
mula gives the unique solution to the wave equation (1), and this 
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solution is of class C . Also, if the wave equation has a solu­
tion u on a compact set, then we expect to be able to prove that 
u is uniformly continuous, since if it were not, we would have a 
contradiction to the classical uniform continuity theorem. 

Incidentally, since weak solutions of the wave equation are phys­
ically significant, we should attempt to accommodate them within 
any constructive theory intended to reflect reality. One way to do 
this within BISH might be to enlarge the class of admissible initial 
functions for (1) to include every function ƒ that is uniformly 
continuous on compact subsets of its domain D c R 3 , and whose 
gradient is defined almost everywhere, and Lebesgue integrable, on 
D (cf. [Bi, Chapter 8, Theorem 5]). 

The results of Pour-El and Richards in connection with ( 1 ) seem 
to suggest that in spite of the intuitive connection between com-
putability and predictability in physics, noncomputable numbers 
and functions necessarily arise even in basic areas like the theory 
of waves. But we do not know whether the intuitive connection 
fails to hold in practice—that is, whether there is any physically 
realizable system represented by the data ( 1 ) with recursive initial 
conditions but nonrecursive solutions (cf. [Kr]). Of course, if we 
follow Bishop and work within a rigorously constructive frame­
work, eschewing Church's thesis as a general principle, then the 
problem of noncomputable solutions of the wave equation does 
not arise. 

To summarise: the book under review provides an intriguing 
introduction to the authors' research on the interplay between re­
cursion theory and analysis. The presentation is clear and careful, 
aimed perhaps more at recursion theorists with a limited back­
ground in analysis than at analysts. Nonetheless, an analyst— 
indeed, any mathematician—with an interest in questions of com-
putability will enjoy reading this book, and will find therein an 
abundance of directions in which to continue the pioneering re­
search of its authors. 
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Many phenomena involving nonlinear wave motion fit into the 
mathematical framework of the so-called "hyperbolic systems of 
conservation laws." These are systems of nonlinear partial differ­
ential equations which describe the conservation of certain physi­
cal quantities, e.g., mass, momentum, energy, etc. The equations 
take the form div <f>(u) = 0, where the divergence is with respect to 
the space-time independent variables, and ^ is a nonlinear func­
tion of the unknown state variable u. 

The most mathematically well-understood case is that of one 


