
598 BOOK REVIEWS 

REFERENCES 

1. H. Bass, J. Milnor, and J.-P. Serre, Solution of the congruence subgroup 
problem for SLn and Spn , Publ. Math. IHES 33 (1967), 59-137. 

2. A. Borel, On the automorphisms of certain subgroups of semi-simple Lie 
groups, Proc. Conf. on Algebraic Geometry, Bombay, Oxford University 
Press, Oxford, England, 1969, pp. 43-73. 

3. A. Borel and J. Tits, Homomorphismes "abstraits" des groupes algébriques 
simples, Ann. of Math. 97 (1973), 499-571. 

4. J. Dieudonné, La géométrie des groupes classiques, Springer-Verlag, New 
York, 1962. 

5. H. Weyl, The classical groups, Princeton University Press, Princeton, N. J., 
1946. 

ROBERT STEINBERG 

UNIVERSITY OF CALIFORNIA, Los ANGELES 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 23, Number 2, October 1990 
© 1990 American Mathematical Society 
0273-0979/90 $1.00+ $.25 per page 

Harmonic analysis of spherical functions on real reductive groups, 
by R. Gangolli and V. S. Varadarajan. Ergebnisse der Mathe-
matik und ihrer Grenzgebiete, vol. 101, Springer-Verlag, Berlin, 
Heidelberg, and New York, 1988, xiv+365 pp., $110.00. ISBN 
3-540-18302-7 

1 

Let 2? be a locally compact Hausdorff space endowed with a 
transitive action of a locally compact group G. Then 3? = G/K 
for a closed subgroup K. If %? also admits an invariant measure, 
then G acts on L2(%?) by unitary transformations by the formula 

(1.1) L„(g)f(x) = f(g-lx). 

The study of the decomposition of this representation into a 
"direct integral" of irreducible components is usually known as 
harmonic analysis on homogeneous spaces. 

Assume that Sf — G/K is Riemannian symmetric. A special 
role is played by CC(G//K), the space of continuous compactly 
supported functions on G which are AT-invariant under the reg­
ular representation (g{, g2) • f(x) - f(g^lxg2). GePfand [Ge], 
observed that under convolution, Ll(G//K) is an abelian Banach 
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algebra. Then every element s in the spectrum L(G//K) can 
be realized, when restricted to &C(G//K), as integration against 
a unique bounded function cj>s, called an elementary spherical 
function. If we write 

(1.2) ^(f)(s)= f f(x)<t>s{x)dx, 
JG 

then for an appropriate subclass of functions in L (G//K), there 
exists an essentially unique measure dco on S, the spectrum of 
Ll(G//K) on Ll{G/K), such that 

(1.3) 
f\f{x)\2dx= f\^(f)(s)\2dco(s), 

JG JZ 

f(x) = J^(f)(s)JJx)dco{s). 

This is known as the Plancherel formula and Fourier inversion. 
One would also like to have an explicit formula for dco. There 

is an additional action of the left-invariant differential operators 
&(<%?) on the dense subspace C™. Then the elementary spher­
ical functions are just A'-bi-invariant eigenfunctions for 2(3?) 
normalized to take the value 1 at e. For example, in the case 
of Un and Tn , 2J{Sf) are just the constant coefficient operators. 
Their eigenfunctions are el<v ' x > with v integral in the case of Tn. 
These are also the characters of the irreducible finite-dimensional 
representations. Then (1.2) is just the usual Fourier transform and 
(1.3) is the classical Plancherel formula and Fourier inversion. For 
a compact group G, the Peter-Weyl theorem implies that 

( 1.4) ƒ (x) = J2 dim {n)trn({l,x)-f), 

where 

(1.5) **(ƒ)= f f(g)tm(g)dg. 
JG 

If ƒ is invariant for the action on the right for a subgroup K, then 
tr7r(/) will be 0 unless n E G , the set of equivalence classes of 
irreducible representations that contain nontrivial AT-fixed vectors. 

For a compact Riemannian space, the spherical functions can 
be written as 

(1.6) (j) (x) = ƒ tm{xk) dk. 
JK 
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Thus in this case, to get an explicit formula we can write 

(1.7) ƒ ( * ) = [ f(xk)dk, 
JK 

plug into (1.4), and integrate over K. The Schur orthogonality 
relations imply that 

(1.8) ƒ ( * ) = ^ S*{f){n)JJx). 

2 
The case of noncompact Riemannian spaces is much more com­

plicated; for one thing the analog of the Peter-Weyl theorem would 
be Fourier inversion for general functions. We illustrate how the 
general theory for obtaining dco looks like in the case of G = 
SX(2, R) and K = 50(2). Then Sf can be identified with the 
upper half-plane 

(2.1) J?* = {zeC\z = x + iy, y>0}, 

with SL(2, R) acting by conformai transformations. Then 
C(G//K) can be identified with functions on the upper half-plane 
which are constant on circles going through iy, i/y centered on 
the imaginary axis. 3J(%?) is a polynomial algebra in the Laplace 
operator 

(2.2) Q = / ( 4 + 4V 
\dx2 dy2J 

Since the functions are bi-invariant under K, it is enough to 
consider the radial component of this operator along the imag­
inary axis. On the group G this comes down to decomposing 
g = r(9l)a(t)r(92) and using "polar coordinates" (0l9t, 02), 
where 
t*> i\ /m l c o s ö s inÖ\ (e1 0 \ 
(2.3) r(0) = . a a , a(t) = n -/ . v ' v J \ - sin 6 cos 6 J w \ 0 e ) 
In / , the eigenvalue problem for determining the elementary 
spherical functions becomes 

(2.4) ^4 + 2coth It^- = -(s2 + 1)0. 
dr dt 

^T-bi-invariant functions are determined by their restriction to 
A = {a(t)} and the Haar measure decomposes into 

(2.5) dx = J(t)ddrdt'd02, 
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with J(t) = const |sinh(2f)|. Thus, f(a(t))Jl/2(t) is in L2(R) 
if and only if ƒ G L2(G//K). Then y/s(t) = Jl/2<ps(a(t)) is a 
solution of the differential equation of the form 

]2 

(2.6) 
d_ 

dt 
— ~ 9(t) y/s(t) = -s2y/(t). 

The spectral theory of ordinary differential operators of this type, 
[We, Ko, and CL, pages 251-256], suggests that the spectral mea­
sure is determined by the asymptotic behavior of y/s as t —• oo. 
For Re(w) > 0 we get 

/-> n\ / \ T {-is+\)t , f ,,NN -1/2 T(yis) 

(2.7) c{s) = lim eK </> (a(t)) = n ' l 
, ^ o o rsy v „ r ( £ ( w + l ) ) 

The aforementioned theory also suggests 

(2.8) dœ(s) = \c(s)f2ds. 

This turns out to be indeed the case; in fact properties of the 
Gamma function give 

(2.9) |c(s)f2 = ™ t a n h ( ^ ) , 

and the inversion formula 

(2.10) f(a(t)) = - L f S*(f)(s)JJiï(iT)\c(s)\-2 ds. 
In Ju 

(The constant in front is dependent on the normalization of the 
Haar measure.) 

In the general case, 2f(8?) gives rise to a system of partial dif­
ferential equations; so the spectral theory does not apply. Never­
theless it is possible to carry out the analysis involved. The spheri­
cal functions and their asymptotics are determined. An inverse to 
5? would have to have the formula 

(2.11) (Sa)(x) = f a(s)JJÏ)\c(s)\-2 ds, 
JÂ 

where A is a maximal isotropic torus in G. The integral makes 
sense for a certain subspace of functions, invariant under the 
canonical action of W — NormG(^4)/y4. The fact that 5?' *f — Id 
is somewhat formal and was established by Harish-Chandra [HC]. 
The fact that f -S? = Id is much more difficult. Harish-Chandra 
was able to do this only by developing a general Plancherel formula 
and Fourier inversion. 
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A proof that just uses the theory of spherical functions also 
exists and was established by Rosenberg using results of 
Helgason and Gangolli. This is done by analyzing the so-called 
Abel transform on the space WC°°(G//K) and its relation to S?. 

3 
The book by Gangolli and Varadarajan gives an account of this 

theory for semisimple symmetric spaces. The core of the book 
exposes ideas in the work of Harish-Chandra on asymptotics of 
elementary spherical functions viewed as eigenfunctions for 2J{Sf) 
(Chapters 4 and 5). The main result, which is the Plancherel for­
mula and Fourier inversion, is in Chapter 6. In addition to Harish-
Chandra's proof that ƒ -S? — Id, the method of Helgason, Gan­
golli, and Rosenberg is also given, so that the proofs are complete. 

Chapter 1 gives an overview of the abstract Plancherel formula 
for the case of spherical functions. Chapters 2 and 3 give the basic 
more elementary results needed for Chapters 4 and 5. Chapter 6 
contains additional results on IF with p ^ 2. 

The style of the book is very clear and essentially complete de­
tails are given, except for the expository parts, where references are 
cited. Ample discussions after each chapter trace the history of the 
subject starting with the work of GeFfand and Harish-Chandra in 
the early fifties and continuing with the contributions of Kostant, 
Helgason, the two authors themselves, and many others. It is an 
excellent survey of the theory of spherical functions for Rieman-
nian symmetric spaces. 

As far as considering it as a textbook for a graduate course, I 
think it would only be suitable for an advanced course, possibly 
a reading course only. For one thing, the techniques used come 
from many different fields—partial differential equations, differ­
ential geometry, Lie groups and Lie algebras, functional analysis, 
and so on. In this respect, I would highly recommend Chapters 1 
and 2 for the expository survey of representation theory, spectral 
theory of Banach algebras, and just basic structure of Lie groups. 
In a subject as technical as this, it is important not to lose sight of 
the main ideas. 

Many of the topics in this book are also treated in [He]. His 
mathematical style is very different and I found it well worthwhile 
to compare treatments of the same topics while preparing this re­
view. For instance, many more examples are treated in detail. 
This I think, makes it more suitable for a less-advanced graduate 
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course. I also want to draw attention to the inversion formula for 
functions that are ^-invariant only on the right (Theorem 4.2 of 
the Introduction for SL(2, R)). This is related to the Poisson 
representation of harmonic functions on the unit disc. Helgason's 
conjecture which generalizes this to an arbitrary symmetric space 
has received considerable attention ([KK] as well as [Sch, Wa]). 

As far as harmonic analysis for more general spaces of functions 
on reductive Lie groups, Harish-Chandra obtained a Plancherel 
formula and Fourier inversion formula for L (G) for an essen­
tially arbitrary reductive group. In turn this was generalized to 
arbitrary algebraic groups as well as some classes of nonalgebraic 
groups by Duflo [D] and the references within. Other develop­
ments in harmonic analysis on reductive Lie groups in the last 10 
years have been in the direction of considering the case of an affine 
symmetric space ( K is no longer compact, but rather a real form 
of a maximal compact subgroup for a different real form of G ). 
The references [F, O, S] provide an incomplete list of papers. 
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Binary quadratic forms, classical theory and applications, by D. 
A. Buell. Springer-Verlag, New York, Berlin, 1989, 247 pp., 
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As the subtitle indicates, this book was written with the inten­
tion of alerting the computer-minded reader to the possibility of 
applying some part of the theory of binary quadratic forms to var­
ious problems. 

In 1801 Gauss laid the foundation of the arithmetic of the forms 
2 2 

f(x, y) = ax +2bxy+cy in sections 153-335 of the Disquitiones 
Arithmetical By 1850 the theory of algebraic numbers, the theory 
of ideals and the theory of class groups were beginning to emerge. 
This forced the rewriting of Gauss theory using the Eisenstein form 

2 2 

ƒ(x , y) — ax + bxy + cy = (a, b, c), with the discriminant 
A = b = 4ac. This revised Gauss theory is what the author 
describes as the classical theory. 

On page 2, three questions are proposed: 
(a) What integers can be represented by a given form? 
(b) What forms can represent a given integer? 
(c) If a form represents an integer, how many representations 

exist and how may they all be found? 
These questions are answered on pages 74-75 by six theorems. 

The reader is thus required to read four chapters, whose titles 
are Elementary Concepts, Reduction of Positive Definite Forms, 
Indefinite Forms, and The Class Group, to prove these theorems. 


