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L FUNCTIONS FOR THE GROUP G2 

I. PIATETSKI-SHAPIRO, S. RALLIS, AND G. SCHIFFMANN 

INTRODUCTION 

The method of L functions is one of the major methods for 
analyzing automorphic forms. For example, the Hecke Converse 
Theorem gives an equivalence via the Mellin transform between 
holomorphic modular forms on the upper half plane and certain L 
functions associated to Dirichlet series, which have analytic contin­
uation and functional equation. The classical theory of automor­
phic forms on the group GL2 can be reinterpreted in terms of the 
spectral analysis of functions on the space GL2(k)\GL2(A) where 
A = A^ is the adele ring of the number field k, ([W-1]). Using 
adelic language, Weil and Jacquet-Langlands have developed the 
Hecke Converse Theorem for GL2 from a representation theoretic 
point of view ([W-2, J-L]). This leads to the problem of analyzing 
the class of automorphic representations of a reductive group, G. 
That is, we consider a G (A) irreducible representation II embed­
ded in a suitable subspace of G(k)\G(A). By the general theory 
developed by Langlands ([L]) one can associate to II a whole class 
of L functions parametrized by the finite-dimensional modules of 
an associated L group. The first two major questions that arise 
are whether these automorphic L functions have analytic contin­
uation and functional equation. These questions are particularly 
relevant in that such automorphic L functions are closely tied to 
applications in number theory. For instance, it is expected from 
Langlands' philosophy that the L functions describing the arith­
metic structure of certain algebraic varieties can be described in 
terms of automorphic L functions. 

The problem of determining the analytic continuation and func­
tional equation of general L functions associated to automorphic 
representations of reductive Lie groups and representations of the 
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L groups has been pursued by two different techniques. The first is 
the interpretation of the L function as arising in the constant term 
of Eisenstein series (the Langlands-Shahidi method). The second 
is the generalized Rankin-Selberg integral representation of the L 
function. We refer the reader to [GS] for an excellent description 
of both methods and a comparison of the various techniques used. 

The second method was originally developed to study the ana­
lytic properties of the L function associated to the tensor product 
of automorphic representations of GL2(A). The nonvanishing of 
such Rankin-Selberg L functions on the line Re(s) = 1 implies 
certain estimates on the Hecke eigenvalues of the local compo­
nents of an automorphic cuspidal representation of GL2(A). In 
concrete terms this determines the location of an unramified local 
component of a global automorphic representation in terms of how 
close to the end of the complementary series such a representation 
must be. 

The next step in the development of the Rankin-Selberg L 
functions is the work (J-PS-Sh). Namely here the tensor product 
of two automorphic representations of GLn and GLm is consid­
ered. The main use of such work is twofold. First, one can prove 
a Strong Multiplicity One Theorem for cusp forms on GLn(A). 
This means simply that two global cuspidal GLn(A) representa­
tions n = 0 ^ n^ and a = (g)v ov (with the same central charac­
ter) are equal if and only if 11̂  = ov for almost all v . Second, 
the Rankin-Selberg L function is used to determine the predicted 
classification of automorphic representations of GLn(A). That is, 
each automorphic representation is given as a subquotient of an 
induced module with cuspidal data, where such data is determined 
uniquely up to associate class [J-S-1,2]. 

Subsequently in [G-PS-R] a theory for Rankin products is devel­
oped for groups of the form GLn x G', G' a classical group. The 
specific example of the triple tensor product of GL2 automorphic 
representations is given in [PS-R]. 

The common feature of the above examples is a setup of the 
following form. Namely we are given three reductive groups G{, 
G, and H so that G D Gx and H D GX . Then we consider 
the corresponding adelic groups G(A), Gx (A), and H(A). We 
let fn e r i j , a cuspidal irreducible representation of G(A). If 
PH is a maximal parabolic subgroup of H, then PH = MH • UH 

where MH is a Levi subgroup and UH is the unipotent radical 
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of PH . We let ôp be the corresponding modular function asso­
ciated to the adjoint action of PH on its Lie algebra. Then ôp 

is a character on PH. We let II2 be a cuspidal representation 
of MH(A). Then with this data we form the induced module 
indp ^ ( I I 2 <8> \SP \s) with s e C. From this we can form a fam­
ily of Einsenstein series ^ ( I I 2 , x) on the group H (A). Then we 
form the integral 

f f (gl)!?s(n2,gl)dgv 

The problem is to determine when such an integral represents a 
good L function, i.e., one that is an Euler product and is related 
to Ilj and n 2 in a simple way. In any event, the above inte­
gral as a function in s has a meromorphic continuation and a 
functional equation with a precise location of poles. This follows 
from knowing the same information about the Eisenstein series 
<g^(Il2, ) ; this in turn follows from the Langlands-Shahidi method 
mentioned above. In any case the analytic L function that arises 
from the integral should be more complicated than the L function 
that arises in normalizing the Eisenstein series ^ ( I I 2 , ) . 

In any event the Langlands-Shahidi method determines a pre­
scribed list of L functions; this list does not include all the pos­
sible cases of L functions in [L]. The Rankin-Selberg method 
has so far yielded only some of the L functions that come about 
by the first method. Thus, one of the major question is whether 
the Rankin-Selberg method will give new examples of L func­
tions not possible by Langlands-Shahidi method. We show that, 
in fact, this is the case. We construct here, via the Rankin-Selberg 
method, the L function associated to the tensor product of the 
standard 7-dimensional representation of G2 with the standard 
two-dimensional representation of GL2. In fact, as a bonus of 
our method, we also represent the L function of the standard 
7-dimensional representation of G2 ! 

1. DATA OF PROBLEM 

Let k be a field of characteristic 0. Let A*(km) be the exterior 
algebra over the m-dimensional column space km . We consider, 
specifically, the case m = 7 and the subspace A (k ) . The group 
GL7(k) acts on k (thru left multiplication of matrices). We 
consider the action of GL7 on A* and, in particular, on A (k1). 
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We say a form i// e A is nondegenerate if y/ has the following 
property: For all y e k - 0, y/y = ^(y, *, *), (viewed as an 

2 7 

element in A (k jk • y)), is a nondegenerate 2 form. The set 
of all nondegenerate forms in A is a stable under GL7, and 
the stabilizer of any such form is a group isomorphic to G x Z3* 
with G, a group isomorphic to a form of G2, where the group 
Z* = Z/3Z or 1 depending on whether k contains cube roots 
of identity. Such a y/ as above determines a symmetric form 
on k1 via the following recipe: y/ A y' A y/z is a multiple of a 

7 7 

fixed element co0 in A (fc ) , i.e. ^ A ^y A y/z = q> {y, z)w0. 
Then 0 determines a nondegenerate symmetric form on k and 
G ç StabGL (^) leaves p invariant. Thus G ç SO(p ) =the 
special orthogonal group of (p^ . (See [H] for these facts.) 

If k is either a number field or a local field then there are at 
most two possibilities for q> . Either q> is anisotropic or tp 
represents a quadratic form of Witt index 3. 

We let Xt{(p ) =the set of all isotropic subspaces of dimension 
equal to / relative to the form (p¥ . The group G acts almost 
transitively on Xt((p ) in the following sense. 

Lemma 1.1. If I = 1, then G acts transitively in Xx(cp ) . If I = 2 
or I = 3, G has a finite number of orbits in Xt((p ) . 

Remark. We note that if k is algebraically closed, the group G 
has a finite number of orbits acting on the space B\SO(q> ) , where 
B is a Borel subgroup of SO(q> ) . We also note the case / = 1 is 
well-known, and a proof is given in [RS]. In the case / = 2 there 
are two orbits. 

In the case / = 2, the small orbit has as representative stabilizer 
in G, a parabolic subgroup Q of G. The /<zrg£ orbit has as repre­
sentative stabilizer, a subgroup H, which is given as a semidirect 
product GL2(k) tx Z where Z is a 3-dimensional unipotent sub­
group. 

We know that X2((p) = P\SO(q> ) where P is a parabolic sub­
group of SO((p¥) having the form GL2(k)xSO(3)t<U with U the 
7-dimensional unipotent radical. Then we have that H = G n P . 
The structure of / / above is compatible with P in the following 
sense. First Z ç SO(3) K 17 and the GL2(k) subgroup of H 
is isomorphic to the embedding of GL2(k) into GL2(k) x 50(3) 
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given by the map 

g~>(g, i(detg))9 

and i is a canonical mapping of kx into a split torus of S 0(3). 

2. GLOBAL RANKIN-SELBERG INTEGRALS 

We let /e be a number field and kv = the local component as­
sociated to each prime v in k. Given an algebraic object X 
(i.e. group or affine variety) defined over k, we let X(A) be the 
corresponding adelized space. 

We consider the embedding of G into SO(tp ) given in §1. 

We recall that P is parabolic of SO(<p ) with Levi factor GL2 x 
S 0(3). We form the corresponding adelized groups G (A), 
SO(p r)(A),P(A),etc. 

We consider the family of characters given on P(A) via the map 

g = (x,y,u)&\ detx\s£2 with x e GL2{A), y e SO(3)(A), u e 
C/(A). Moreover, we let r be a cuspidal irreducible representation 
of GL2(A) occuring in L2(GL2(k)Z{A)\GL2(A)) with Z = the 
center of GL2(k). This means that T has trivial central character. 
Then we form the family of induced automorphic representations 

/ ( T , s) = lndf£f ) (A,(T 611 f*2 ® lSO(3) ® ljy). 

With such a family we can construct Eisenstein series. Let 
/ ( T , J , X) be an analytic family in 7(T , J) . Then for s so that 
Re(s) is sufficiently large we form the Eisenstein series 

r ( ƒ ( T , j , x)) = J ^ ƒ(T , ^, yx). 
P{k)\S0{Q){k)3y 

Then S7( ) has a meromorphic continuation in s and admits 
a functional equation in s. For this we consider the SO(Q)(A) 
intertwining operator M : I(r, s) —> / ( T , -51) defined by 

y ( / (T , $ , . * ) ) = / f{T,S,WUX)du, 
JU(A) '17(A) 

(with w , the appropriate Weyl group element which sends all the 
positive roots to negative roots). Then the functional equation of 
r ( / (T,s, )) is 

&(f(T,S,X)) = g(M(f{T,S,x))). 
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Moreover, if Q is any finite set of primes, we denote by the re­
stricted L function as the Euler product 

v $n 

of the appropriate local Lv(--) factors. Since the representation 
/ ( T , S) = <g)v Iv(rv , s) with IV(TV , s), the corresponding local 
representation, we say ƒ (r, s, ) is factorizable if ƒ(T , s, ) = 
FL fv(

Tv > 5 ' ) • L e t fi/ b e t h e s e t o f P r i m e s where fv(zv,s, ) is 
not the unique spherical vector in IV(TV , s). Then f(z, s 9 ) = 

/ ° ( T , S , ) / Q ' ( T , J , ) when fa =Tivçnfv(Tv9s9 ) a n d / ^ = 
n^eQ fv(

Tv> s > ) • I n Particular we know that 

Mw(f{x9s9 )) = 
L n ' ( T , s - l / 2 ) Lû ' (T,Sym2 ,2$) 

r f l 7 / 
L " ( T , S + 3 / 2 ) J L L " ( r , S y m z , 2 s + l ) 

where Mv
w is the corresponding local intertwining operator asso­

ciated to Mw . Here LQ(T9 S) and LQ(r , Sym2, s) are the re­
stricted L functions determined by the standard 2-and 3-dimen-
sional representations of GL2(C) associated to the cuspidal rep­
resentation T of GL2(A). Then we expect from the theory of 
Eisenstein series that 

s ~+ LQ ' ( r , * + 3 / 2 ) L Q , ( T , Sym2, 2s + 1 ) W ( T , S9 X)) 

admits a finite number of poles. 
Let n be a cuspidal irreducible representation of G(A). Let 

F e u be a smooth function. We form the Rankin-Selberg inte­
gral: 

U{F9f(x9s9 )) = LS(T9S + 3/2)LS(T9 Sym2, 2s + I) 

[ F(x)^(f(T9s9x))dx. 
JG(k)\G(A) 

X 
lG(k)\G(A) 

In this case the set S depends on F and f(x9s9 ) to be specified 
below. 

We let U0 be the unipotent radical of a Borel subgroup of G. 
We consider an additive character y/u on the U0(k)\U0(A) which 
has the property that it is nontrivial on each root subgroup of 
U0(A) which corresponds to a simple root. Then we say II is a 
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generic representation of GL(A) if the integral 

ƒ F(u)y/rj (u)du 
JU0(k)\U0(A) ° 

is nonzero for some F ell. 
Given F e II we say F is factorizable in the following sense. 

There exists a G(A) intertwining map rn : ®v Ylv —• II and let 
rn((&vFv) = F where Jf̂  for almost all v is the unique Gv 

spherical vector in Tlv . 
We let Lv (Ylv El TV , $) be the local Euler factor defined in 

the following manner. The representation 11̂  (TV resp.) cor­
responds to a semisimple element Av in LG° = G2(C) (2?v in 
LGL2 = GL2(C) resp.) determined by the Satake classification of 
spherical representations of G. (CJJL2 resp.). Then L^ I I^EIT^ , s) 
is defined as 

[ d c t ( / 1 4 - ^ « ^ o r 1 . 
Theorem 2.1. Le£ /{T9S, ) am/ i7 be factorizable functions as 
defined above. 

Let S be the set of places v where v is Archimedean and where 
the local components fv(rv, s, ) and Fv are not spherical vectors. 

Let II be a "generic" representation. Then 

n(F,f(T,S, )) = lls(F , f (T , S))LS (U®T , ^+ S^J , 

where II5 is a local Euler product (specified below) over the primes 
v E S and L (II El T , 1/2 + 5) is the restricted L function 

LS(UMT, 1/2 + *)= J ] LV(IIV®TV, 1/2 + *). 

v$S 

Moreover the function L (II El r , s) admits a meromorphic ex­
tension to C. 

Remark. Since the Eisenstein series I ? ( / ( T , S , )) is normalized 
by / ^ ( T , 5 + 3/2)LS(T , Sym2, 2s + 1) then it should follow that 
the function 5 ~* 1^(11 El T , s) admits a finite number of poles! 

By the well-known principle of uniqueness of Whittaker mod­
els the representation Uv can be embedded into Ind(^ ) {y/,v ) v ) . 

Similarly TV can be embedded into lndN
2^k\ (y/v) where y/v is 

a nontrivial additive character on N - {(o*)|x € ^ } ) . Using 

these embeddings we let Wv(xv , g9s) belong to lndP
v(rv ®l\s

v
+2) 
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and WF e Tl be the corresponding Whittaker functions. Then 
V 

we form the integral 

(*)„(*)= f WF(g)Wv(Tv,g,s)dg, 
JVV\GV

 v 

where Vv is the 4-dimensional subgroup of (U0)v which is an ex­
tension of Zv by the 1-dimensional root subgroup corresponding 
to a long simple root of G. 

In fact we have that the data is chosen in such a way that 

lls(F,f(x,s)) = H(*)v(s). 
ves 

Then we prove that 

Corollary to Theorem 2.1. Let s0 e C be given. Then it is possible 
to choose the data F and ƒ(T , s, ) {depending on s0) so that 
U(F(f(r9s9 )) = IOQ(F, f(x,s9 ))LS(T1®T,±+S) where 1^ is 
a meromorphic function in s which is nonvanishing at s0. 

We note that we can extend the application of the method 
of Theorem 2.1 to cover another L function for the group G. 
Rather than use a cusp form r we use an Eisenstein series on the 
group GL2(A). Indeed we consider the parabolic subgroup P' of 
SO(q> ) contained in P of the form B2 • SO(3) • Ü where B2 

is the Borel subgroup of GL2. Then considering T2 c B2 as a 
maximal torus, we define a character (S(s, ju) on T2 = {(t{, t2) G 
kx x kx} ~> \tl\

s+^5,2\t2\
s~,l+V2 . We form the family of induced 

automorphic representations 

I(V,s) = IndS
?°fA\ô{s,fl)®lSO{3)®ld). 

With such a family we construct Eisenstein series. Let f(s, n, x) 
be an analytic family in 7(/i, s), and we form for appropriate 
(s, ft) the Eisenstein series 

g'(f(s,p,x))= ] T f{s,n,yx). 
P'(k)\SO(Q)(k) 

Again the normalizing factor for W(f{s, n, x)) is 

L 5 ( l , s + n + 3/2)LS(l ,s-n + 3/2)LS(l ,s + n+ 1/2) 

xLS(l,s-n+ l/2)LS(l, 2s + 2fi)LS(l, 2s - 2/t) 

xLS(l,2s+l)LS{l,2fi+\) 

= ^S(s,fi). 
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Then we form again the Rankin-Selberg integral 

ll(F , ƒ ( * , / / , )) = ?(s, /i) [ F(x)P(f(s ,ii9x)) dx. 
JG(k)\G(A) 

Then we prove the analogue of Theorem 2.1. 

Theorem 2.2. Let F and f(s, ju, ) be factorizable functions as 
given in Theorem 2.1. Let S be also as given in Theorem 2.1. 
Then 

U{F9f(s9/i9 )) = II5(F, ƒ(*,/*, )) 

LS(Tl, s + // + 1 /2)L5(n , 5 - / 1 + 1 / 2 ) 

w/z r̂e II5 w a local Euler product over the primes in S and 
L (EI, X) is the restricted L function 

Ls(Il9X)= l[Lv(Ylva). 
v$S 

Here Lv is the local Euler factor defined in the following manner 
{see comments preceding Theorem 2.1) 

Moreover the function L (II,/I) admits a meromorphic extension 
to C. 

Remark. We note that we can specialize the above Rankin-Selberg 
integral along a certain hyperplane s - fi+ 1/2 = KQ (along which 
the Eisenstein series lf( f(s, //, )) has no singularities) with KQ a 
real large integer. Then we have a Rankin-Selberg representation 
of Ls(Yl, X). Note that Ls{Yl, s-/i+ 1/2) = Ls(Il, K0) is given 
by a convergent Euler expansion! We also expect as before that 
/ / ( n , A) has a finite number of poles in X. 

3. UNRAMIFIED CASE AND BRANCHING FORMULA 

If the data is (*)v is unramified (i.e. the local components are 
spherical) then we calculate 

Lemma 3.1. 

(*)„(*) ^ 
Lv{xv,Sym\2sH)Lv{xv,s + l) 

The basis of such a calculation is the use of the Casselman-
Shalika formula for Whittaker functions in terms of characters of 
irreducible finite-dimensional representations. 
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The critical step in this calculation is the use of a certain Branch­
ing Formula from SO(7, C) with highest weight (kx, A2, 0) (with 
Xt G Z and kx > A2 > 0) and consider the restriction to G2(C). 

We parametrize a highest weight representation of G2(C) by a 
pair (m, n) (with m, n e Z and m > « > 0), which corresponds 
to the weight nœx+(m-ri)œ2 with cox,co2 fundamental weights 
of G2(C) dual to the two simple roots ax and a2. Then the 
particular Branching Formula we prove is the following: 

a=min(A, — k2 , A2) P=^2 

(A, ,A 2 ,0 )= £ £ ( A , - a , / 0 . 

The formula is stated in [J]. Our proof is based on using the 
ideas of [BGG] and [KV]. 
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