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HURWITZ GROUPS: A BRIEF SURVEY 

MARSTON CONDER 

ABSTRACT. Hurwitz groups are the nontrivial finite quotients 
2 3 7 

of the ( 2 , 3 , 7 ) triangle group (x, y\x — y = (xy) = 1) . 
This paper gives a brief survey of such groups, their signifi­
cance, and some of their properties, together with a description 
of all examples known to the author. 

1. INTRODUCTION 

A Hurwitz group is any finite group which can be generated by 
an element x of order 2 and an element y of order 3 whose 
product xy has order 7. Equivalently, a Hurwitz group is any 
finite nontrivial quotient of the ( 2 , 3 , 7 ) triangle group, that is, 
the infinite abstract group A with presentation A = (x, y\x2 = 
y3 = (xy)1 = 1). The significance of the latter group (and its 
quotients) is perhaps best explained by referring to some aspects 
of the theory of Fuchsian groups, hyperbolic geometry, Riemann 
surfaces, and triangle groups, as given below. Details may be found 
in the recent books by Beardon [1] and Jones and Singerman [15]. 

A Fuchsian group is any discrete subgroup of PSL(2, R), the 
group of all linear fractional transformations of the form z H-+ 
(az + b)l(cz+d) with a, b, c, d E R satisfying ad-be = 1. The 
latter group acts on the upper half-plane % — {z e C| Im(z) > 0} , 
in fact as the group of all conformai homeomorphisms of %, 
and when % is endowed with the hyperbolic metric (given by 
ds = (dx -\-dy )/y for z = x+iy e C), % becomes a model of 
the hyperbolic plane, and PSL(2, R) acts as a group of hyperbolic 
isometries. 

Any given Fuchsian group T acts properly discontinuously on 
^ , and the quotient space S = %f/r is a Riemann surface. Con­
versely, every Riemann surface can be obtained in this way. A 
fundamental region for T is a closed set F in ^ whose T-images 
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{y(F)\y e T} cover % and have mutually disjoint interiors; for 
example, if p is the hyperbolic metric, and w is any point of ^ , 
then F may be taken as {z e %f\p(z, w) < p(z, y(w)) for all 
y e T} , the Dirichlet region centered at w . The Riemann surface 
S = %?'/r is compact if and only if T has a compact Dirichlet 
region. Also if S is compact, then T has no parabolic elements. 

In any case, if T has a Dirichlet region F with finite hy­
perbolic area, then T is a finitely generated group, with a pre­
sentation in terms of r elliptic generators xx, x2, . . . , xr, and 
s parabolic generators p{, p2, . . . , ps, and 2^ hyperbolic gen­
erators al9 bl9 a2, b2, ... , at, bt, subject only to the relations 
x™1 = x™2 = • • • = x™r = 1 along with the single additional rela­
tion xlx2...xrplp2...psalb{a^lb^la2b2a2

lb2
l ...atbta~lb~l = 

1. The hyperbolic area of F is then given by ju(F) — 
27t{(2/-2) + £ ; = 1 ( l - l / ™ ; ) + 4 -

Now if S is any compact Riemann surface whose genus is 2 
or more, then also S = %f/K for some Fuchsian group K hav­
ing no elliptic elements (and no parabolic elements), indeed with 
presentation 

(a{9 bx, a2, b2, . . . , ag, bg\a{b{a~lb~Xa2b2a~xb~x 

and the hyperbolic area of a Dirichlet region for K is 2n(2g - 2). 
The group Aut S of all automorphisms (that is, conformai home-
omorphisms) of S is then isomorphic to T/K for some Fuchsian 
group T containing K as a normal subgroup; and because the in­
dex of K in G is 2n(2g-2)/ju(F), where ji(F) is the hyperbolic 
area of some compact Dirichlet region F for T in %, it follows 
that Aut S is finite. 

In particular, from the formula given above (with s = 0), the 
smallest positive value for ju(F) is n/21, obtainable only when 
t = 0 and Y = 3 and {mx, ra2, ra3} = { 2 , 3 , 7 } . This leads 
to the famous theorem of Hurwitz [14], namely, that if S is 
any compact Riemann surface of genus g > 2, then | Aut 5*1 < 
84(g - 1). The bound is attained precisely when T has the pre-

' l "X 1 

sentation (*j , x2, x3\x{ = x2 = x3 = x{x2x3 = 1), that is, when 

T is isomorphic to the ( 2 , 3 , 7 ) triangle group A = (x, y\x = 
3 7 

y = (xy) = 1), in which case Aut S is a Hurwitz group! Obvi­
ously Hurwitz groups derive their name from this result. 
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More generally, for positive integers p , q and r, the (p, q, r) 
triangle group is the group with presentation (x, y|xp = y* = 
(xy)r = 1). When l/p + l/q + l/r > I, this group is finite, and 
is one of the finite spherical groups (either cyclic or dihedral, or 
isomorphic to A4, S4 , or A5) ; in particular the 2-sphere can be 
tessellated using a triangle whose interior angles are n/p, n/q, 
and n/r. When l/p+l/q+l/r = 1, the group is infinite but sol­
uble (in fact Abelian-by-cyclic, cf. [10]), and the euclidean plane 
can be tessellated using a triangle with angles n/p , n/q , and n/r. 
Finally, if l/p+l/q+l/r < 1, then the (p, q, r) triangle group 
is infinite but insoluble, and the hyperbolic plane can be tessellated 
using a hyperbolic triangle with angles n/p , n/q , and n/r. 

The importance of the (2, 3, 7) triangle group A comes from 
the fact that the smallest nonnegative value of the expression 1 -
(l/p + l/q + l/r) is attained when {/?, q, r} = {2, 3, 7} . 

In particular, an insoluble group G (other than A5) cannot be 
a quotient of any of the spherical or euclidean triangle groups, and 
so the best possible generating pair {x, y} for any such group (in 
terms of minimality of the orders of generators and their product) 

2 1 7 

would be one satisfying the relations x = x = (xy) = 1, if such 
a pair exists. 

For the same reasons, quotients of the (2, 3, 7) triangle group 
have importance also in the study of regular maps. A regular map 
of type {p, q} on a surface of Euler characteristic x is essentially 
a map (that is, a graph embedded in the surface with faces homeo-
morphic to the unit disk) whose automorphism group G acts reg­
ularly on the set of ordered edges, so that every face of the map is 
surrounded by p edges, and every vertex is incident with q edges. 
If such a map has n vertices, then it has nq/2 edges and nq/p 
faces, and therefore x = n-nq/2 + nq/p = \G\(l/q- 1/2+ l/p). 
Hence the maps with the largest possible number of automor­
phisms on a given surface occur only when the quantity l/q + l/p 
takes its largest value less than 1/2, namely 10/21 ; that is, when 
{P 9 q} = {3, 7} . Correspondingly G can be generated by an ele­
ment of order 2 (reflecting any chosen edge), and one of order 3 
(permuting the edges around either a face or a vertex), such that 
their product has order 7 ; in other words, G is a Hurwitz group! 

In this paper a survey is given of much that is known about 
these groups. Section 2 begins with some elementary properties 
of Hurwitz groups in general, and includes a few devices that are 
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useful in the search for them. Section 3 gives a list of all simple 
Hurwitz groups known to the author, and Section 4 concludes the 
paper by describing some larger examples, together with methods 
for constructing such things. 

2. HURWITZ GROUPS: ELEMENTARY PROPERTIES 

Suppose G is any Hurwitz group. The following properties are 
immediate: 

(a) G is perfect (and therefore insoluble), 
(b) G has a maximal normal subgroup K such that G/K is 

a non-Abelian simple Hurwitz group, and 
(c) the order of G is divisible by 84. 

The first is a consequence of the fact that the Abelianization of 
the (2, 3, 7) triangle group A is trivial—if x and y commute, 
then the relations x2 = y3 = (xy)1 = 1 collapse to x = y = 
1. In particular, G cannot be soluble, for it has no composition 
series with Abelian factors. Next, if K is any maximal normal 
subgroup of G, then G/K is simple and, being also a nontrivial 
quotient of A, must also be a Hurwitz group. The last property 
is a consequence of Hurwitz's theorem, although it can also be 
proved more directly (as in [21] for example). 

These properties make it clear that a sensible way to begin any 
search for Hurwitz groups is to look at finite simple groups (and, 
in particular, those whose orders are divisible by 84). Such an 
approach was adopted by the author of this paper, in finding all 
Hurwitz groups of order less than a million (see [7]). 

The smallest Hurwitz group is the simple group PSL(2, 7), of 
order 168, which is the group of Klein's quartic curve x3y + y z + 
z3x = 0. It can be generated (for instance) by the linear fractional 
transformations Z K - 1 / Z and z ^ ( z - l ) / z of the projective 
line over the field Z 7 , these transformations having orders 2 and 
3, respectively, with their product being z \-+ z + 1 (which has 
order 7). In fact, PSL(2, 7) is known to have the presentation 
(x, y\x = y3 = (xy)7 = [x, y]4 = 1), where [x, y] denotes the 
commutator of x and y. Presentations similar to this one, that 
is, with an extra relator inserted, have been considered by several 
authors (see [9, 17, 19] and [29]). In particular, from their work 
we can extract the following: 

(d) If {x, y} is a generating pair for a group G satisfying 
the relations x2 = y3 = (xy)1 = 1, and m is the or-
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der of the commutator [ x , y ] , then G is trivial if m = 
1, 2, 3 , or 5 , or isomorphic to PSL(2,7) if m = 4 , or 
to PSL(2,13) if m = 6 or 7, or to a nonsplit extension 
by PSL(2, 7) of an elementary Abelian group of order 64 
if m = 8 . 

Also, if m = 9, then the group G must be an extension by 
PSL(2,8) of an Abelian or center-by-Abelian group, according to 
calculations by Leech in [19] based on the discovery by Sims that 
the group with presentation (x, y\x = y = (xy) = [x, y] =1) 
is infinite. 

The situation is not fully known for larger values of m , but 
it seems likely that the corresponding presentations define infinite 
groups in those cases too, and of course in many cases a number 
of finite factor groups have been found. For example, the simple 
groups Jj and PSL(2, 113) both have generating pairs {x,y} 
satisfying x2 = y3 = {xy)7 = [x, y]19 - 1 (see [13]). 

Turning now from group presentations to permutation repre­
sentations, we have this very useful property : 

(e) If {x, y} is a generating pair for a group G satisfying 
the relations x2 = y3 = (xy)7 = 1, then in any transitive 
permutation representation of G on a set of size JV, if the 
permutation induced by x is made up of k transpositions 
(and n -2k fixed points), and the permutations induced 
by y and xy have a total of y and r\ cycles (including 
1-cycles, that is, fixed points, as well as 3- or 7-cycles), 
respectively, then k >y + r]-2. In particular, a necessary 
condition on N is that [N/2] + 2[N/3] + 6[N/7] > 2N-2. 

For a proof of the same sort of thing in a more general set­
ting, see [8] and other references listed there. For an application, 
consider the Mathieu group M23 : in the natural action of this 
group on 23 points, every involution has cycle type 172 , every 
element of order 3 has cycle type 1 3 , and every element of or-
der 7 has cycle type 1 7 , but if k = 8 and y = 11 and r\ = 5, 
then k < y -f r\ - 2 ; therefore M23 is not a Hurwitz group. The 
same argument can also be applied to the sporadic simple groups 
HS (Higman-Sims) and McL (McLaughlin) in their representations 
on 100 and 275 points, respectively: neither of them is a Hurwitz 
group. 

Another useful device for detecting pairs of generators of the 
sort in question is provided by a well-known result from character 
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theory (cf. Theorem 2.12 in [12]): 
(f) If z is an element of order 7 in the finite group G, and K 

and L are conjugacy classes of elements of G such that 
K contains involutions and L contains elements of order 
3, then the number of ways in which z can be expressed 
as a product xy with x e K and y e L is given by 

\K\ \L\ A Xi(K)Xi(L)T£z) 
\G\ tt *,(1) 

w h e r e X\ > X2 > • • • > Xm
 a r e the ordinary (complex) char­

acters of G, and #,-(/£) and /,.(£) denote the values of 
the character xt

 o n the classes K and L , and /f.(l) its 
degree. 

For example, in the group PSU(3, 3) this formula shows there 
are precisely seven pairs {x, y} with x of order 2, and y of 
order 3 , and xy equal to a given element of order 7 . But also 
the same thing is true in the group PSL(2, 7), and as this is iso­
morphic to a subgroup of PSU(3, 3), and all cyclic subgroups of 
order 7 are conjugate in the latter group, it follows that every such 
pair generates a subgroup isomorphic to PSL(2, 7). In particular, 
PSU(3, 3) is not a Hurwitz group, contrary to a suggestion made 
in [27]. 

On the other hand, the same device was used in [13] and inde­
pendently in [27] to show that the simple group Jx is a Hurwitz 
group, and again in [27] to show that certain of the Ree groups 
are Hurwitz groups. Also it has often been fundamental to the 
enumeration of Hurwitz subgroups (among other things) in many 
of the larger sporadic finite simple groups. These will be discussed 
briefly in the next section. 

3. SIMPLE HURWITZ GROUPS 

Relatively few of the non-Abelian simple groups are known to be 
quotients of the ( 2 , 3 , 7 ) triangle group. Many small possibilities 
can be eliminated using the properties outlined in Section 2, but 
for the majority of the remainder a more sophisticated approach is 
likely to be required. Nevertheless three infinite families of simple 
groups have been found to be Hurwitz groups: 
( 1 ) The alternating group An is a Hurwitz group, for all but finitely 
many positive integers n . 

This was first proved by Graham Higman, using a clever argu­
ment based on the use of coset diagrams for the ( 2 , 3 , 7 ) triangle 
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group. The result remained unpublished until the author of this 
paper took it further, finding that in fact An is a Hurwitz group for 
all n > 168, and for all but 64 integers n in the range 3 < n < 167 
(see [4]). The exceptional values of n are those which fail to sat­
isfy the equality [n/2] + 2[n/3] + 6[n/7] >2n-2 (cf. Section 2), 
together with 7, 8, 9, 14, 16, 24, 30, 44, and 60. 
(2) The group PSL(2, q) is a Hurwitz group when q = 7, and 
when q — p for any prime p = ±1 modulo 7, and when q = p 3 

for any prime p = ±2 or ±3 modulo 7, and for no other values 
of q. 

This result is due to Macbeath (cf. [24]), who showed in fact 
that PSL(2, q) has a Hurwitz subgroup whenever its order is di­
visible by 7, but all such subgroups are mutually isomorphic 
(3) The simple Ree group 2G2(3

P) is a Hurwitz group for every 
odd prime p > 3 . 

The proof of this result (due to Chih-han Sah) may be found 
as part of Proposition 2.7 in [27]. Incidentally, Proposition 2.6 
in [27] gives a classification of all simple Hurwitz groups having 
a Sylow 2-subgroup of order 8, based on theorems of Gorenstein 
and Walter. 

Apart from these infinite families, eleven of the sporadic finite 
simple groups are known to be Hurwitz groups: the first Janko 
group Jj (see [13] or [27]); the Hall-Janko group J2 (see [11]); 
the smallest Conway group Co3 (see [32] or [30]); the Held group 
He, the Rudvalis group Ru, the Harada-Norton group HN, and the 
Lyons group Ly (see [30] for all of these); the Fischer group Fi24 

and the Thompson group Th (cf. [22]); and the Fischer group Fi22 

and the fourth Janko group J4 (cf. [31]). 
On the other hand, for instance, none of the Mathieu groups 

is a Hurwitz group: M n and M12 have no elements of order 
7 ; M22 and M23 can be eliminated using the condition cited as 
property (e) in Section 2; and M24 can be eliminated either by 
using a character-theoretic argument (just as for PSU(3, 3) in 
Section 2, showing that every Hurwitz subgroup of M24 has to 
be isomorphic to PSL(2, 7)), or, more simply, by verifying that 
the (2, 3, 7) triangle group has only one transitive permutation 
representation of degree 24, and that corresponds to the action 
of PSL(2, 7) on cosets of a cyclic subgroup of order 7. (Note: 
there have been numerous mistaken claims that M24 is a Hurwitz 
group, usually resulting from a failure to identify PSL(2, 7) as 
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one of its maximal subgroups!) Of the remaining sporadic simple 
groups, all but the Baby Monster B and the Fischer-Griess Monster 
M (whose maximal subgroups are yet to be classified) have been 
shown to have no generating pairs satisfying the relations x2 = 
y3 = (xy)7 = 1 (see [31] and [16]). 

Perhaps the only other fact worth mentioning here is this: the 
group PSL(3, q) is a Hurwitz group for no prime-power q except 
2 (in which case it is isomorphic to PSL(2, 7)) (cf. [3]). 

To conclude this section, here is a challenge question: is the 
Monster a Hurwitz group? 

4. CONSTRUCTIONS FOR LARGER HURWITZ GROUPS 

One of the easiest ways to construct large Hurwitz groups is to 
take a subdirect product of two smaller ones. In fact, if K and 
L are normal subgroups of finite index in the ( 2 , 3 , 7 ) triangle 
group A, and their intersection M = KnL is properly contained 
in both, then the quotient A/M is a Hurwitz group isomorphic 
to a subgroup of the direct product A/K x A/L which projects 
onto each factor. Hence, for example, PSL(2, 7) x PSL(2,8) is a 
Hurwitz group, as is PSL(2, 13) x PSL(2, 13), because there are 
two distinct normal subgroups of A giving PSL(2, 13) as factor 
group; but, on the other hand, PSL(2, 7) x PSL(2, 7) is not, for 
there is only one normal subgroup of A giving PSL(2, 7). 

Another extremely fruitful way of finding composite Hurwitz 
groups was introduced by Macbeath in [23]. The idea here may 
be explained as follows: 

If K is a normal subgroup of finite index in the ( 2 , 3 , 7 ) trian­
gle group A, with quotient A/K isomorphic to the Hurwitz group 
G of order 84(# - 1), then G acts on a compact Riemann sur­
face S of genus g, whose fundamental group is isomorphic to K 
(see Section 1). In particular, K may be generated by 2 g distinct 
elements al9 bl9 a2> b29 ... 9 ag9 b 9 these satisfying a single re­
lation, namely, [ax, bx][a2, b2]... [ag, bg] = 1. Hence, if K' de­
notes the commutator subgroup of K, then the quotient K/K1 is 
a free Abelian group of rank 2g. But now for any positive inte­
ger m, if Km is the subgroup generated by the mth powers of 
all the at and bt (for 1 < i < g), then the product K'Km is 
a characteristic subgroup of K, such that the quotient K/KfKm 

is an Abelian group of order m2g (being a direct product of 2g 
copies of the cyclic group of order m). And moreover, the group 
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A/KfKm is an extension of this group by G, and therefore a Hur-
witz group of order 84(g - l)m2g , acting maximally on a compact 
Riemann surface of genus (g - l)m2g + 1. In some cases, even a 
factor group of order S4(g - \)m8 can be obtained, with a maxi­
mal action on a compact Riemann surface of genus (g - \)m8 + 1 
(cf. [28]). See also [20]. 

This sort of approach was also taken by Leech in [18], giving 
presentations for several normal subgroups of A together with 
information about how the generators of A act by conjugation on 
these subgroups, and new presentations for some small Hurwitz 
groups. 

Some years later Jeffrey Cohen used this information in order 
to completely classify all Hurwitz groups that are extensions by 
PSL(2, 7) of an Abelian group: in each case the normal Abelian 
subgroup has to be a direct product of homocyclic groups of rank 3 
or 6, depending on the exponent (see [2]). Furthermore, the same 
information can be used to construct a number of extensions by 
PSL(2,7) of a metabelian group, by analyzing the commutator 
subgroup of the normal subgroup K for which A/K = PSL(2, 7), 
as in Section 4 of [7]. 

Also in [18] Leech raised the question as to whether a Hurwitz 
group could have a nontrivial center. He answered this question 
(affirmatively) himself in [19], by analyzing the normal subgroup 
of A corresponding to the case of PSL(2, 8). In fact he showed 
that for every positive integer p , there is a Hurwitz group of order 
504/77 which is an extension by PSL(2,8) of an Abelian group 
of rank 7 and exponent p, and if p is even, then the center of 
this group has order 2. Furthermore, if p is divisible by 4, there 
is another one of order 1 OOSp (being an extension of the cyclic 
group of order 2 by the first one), and this has center of order 
4. A similar approach shows that for every positive integer m 
divisible by 3, there is a Hurwitz group of order 504m7 which is 
an extension by PSL(2,7) of a metabelian group of order 3m7 , 
with a center of order 3 in each case (cf. [5]). 

Subsequently, the author of this paper discovered that the cen­
ter of a Hurwitz group can be an arbitrarily large 2-group. The 
following construction shows how: 

Take any ascending sequence of distinct odd prime-powers 
{^}0 < / < 5 satisfying the conditions given by Macbeath's result de­
scribed in Section 3, and for 0 < i < s, let X{ and Y- be matri-
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ces which generate SL(2, qt) and satisfy the relations xf = Yf -
(XjY.)7 — —I2 (where I2 is the identity matrix). Let F be the di­
rect product of all these groups SL(2, q.), define X = XQX{ ...Xs 

and Y = Y0Y{...Xs9 and let R be the cyclic subgroup generated 
by X (which is central in F). The factor group F/R is then a 
Hurwitz group, generated by the cosets containing X and Y, and 
its center is an elementary Abelian 2-group of order 2s. 

The details may be found in [6]. 
Finally we mention that some interesting quotients of A may 

be found using a computer implementation of Sim's technique for 
finding all subgroups of prescribed low index in a given finitely 
presented group, using the CAYLEY system, for example. Enu­
merating subgroups of index up to 35 in A and examining the 
groups generated by the permutations induced by x and y on the 
cosets, one finds the following Hurwitz groups (as well as many 
other small examples already described): an extension of an ele­
mentary Abelian group of order 3 by the Hurwitz group of order 
1344 (itself an extension by PSL(2, 7) of an elementary Abelian 
group of order 8), an extension by this group of an elementary 
Abelian group of order 2 , an extension by the alternating group 
Al5 of an elementary Abelian group of order 2 , and an extension 
by PSL(2, 7) of the direct product of 7 copies of the alternating 
group A5. The complete list (obtained from subgroups of index at 
most 40) is given in [25]; conjugacy classes of subgroups of index 
up to 50 were computed by Cannon as early as the mid-1970s (cf. 
[26]). 
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