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A SHARP COUNTEREXAMPLE ON THE REGULARITY 
OF ^-MINIMIZING HYPERSURFACES 

FRANK MORGAN 

A standard problem in the calculus of variations seeks a hyper-
surface S of least area bounded by a given (n - 2)-dimensional 
compact submanifold of Rn . More generally, given any smooth 
norm O on R" , seek to minimize 

d>(S)= /<D(n), 
Js 

where n is the unit normal vector to S. Think of the integrand 
O as assigning a cost or energy to each direction. We assume 
that O is elliptic (uniformly convex), the standard hypothesis for 
regularity. 

Geometric measure theory (cf. [M, Chapters 5, 8], [F l, 5.1.6, 
5.4.15]) guarantees the existence of a (possibly singular) O-mini-
mizing hypersurface with given boundary. For the case of area 
(<E>(n) = 1), area-minimizing hypersurfaces are regular embed
ded manifolds up through R , but sometimes have singularities 

o 

in R and above. For general elliptic O, a result of Almgren, 
Schoen, and Simon [Aim S S, Theorem II.7] guarantees regularity 
up through R , but there were no examples of singularities below 

o 

R . We establish the sharpness of the Almgren-Schoen-Simon 
regularity result by giving a singular ^-minimizing hypersurface 
in R4. 

The surface is the cone C over the Clifford torus S1 x S1 c 
R 2 x R 2 : 

C = {(x,y)eR2xR2:\x\ = \y\< 1}. 
The norm O depends smoothly on 9 = tan - (|y|/|.x|) alone, so 
that we may view O as a norm on R . The unit O-ball is pictured 
in Figure 1. Any smooth, symmetric, uniformly convex approxi
mation of the square will do. Note that O is smaller (say 1) on 
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FIGURE 1. The unit O-ball. The smallness of O in 
the diagonal directions helps to make the cone C O-
minimizing. 

the normals to diagonal directions, which occur in the cone C , so 
that fc O(n) is relatively small. 

The unit ball of the norm dual to O, called the Wulff crystal 
W{$>), is pictured in Figure 2. The Wulff crystal itself solves an 
important problem: its boundary surface S minimizes 0(5) for 
fixed volume enclosed (cf. [T, §1]). In nature O(S') represents 
the surface energy of a crystal, and the Wulff crystal W{<&) gives 
the shape which a fixed volume of material assumes to minimize 
surface energy. The Wulff crystal of our norm O resembles a 
pivalic acid crystal (see Figure 3). 
The Proof. The proof that the cone C over S x S c R is 
O-minimizing employs the "method of calibrations" (cf. [HL, In
troduction]). One must produce a closed differential 3-form or 
"calibration" cp such that for any point p and unit 3-plane £, 
with unit normal *£ , 

(l) <£, ?(/>)><*(*£), 
with equality whenever Ç is the oriented unit tangent to C at p . 
Then if S is any other surface with the same boundary, 

so that C is ^-minimizing. 
Finding a calibration cp remains an art, not a science. Our 

calibration is 

(p = (sin2 2(9 dr + sin 40 rd6) A ddx A d62 , 
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FIGURE 2. The Wulff crystal W(Q>) may be defined as 
the unit ball for the norm dual to O. For fixed volume, 
W(<b) has the least surface energy measured by O. 

FIGURE 3. The pivalic acid crystal resembles the Wulff 
crystal W{$>) of <D [GS]. 

where r2 = |x|2 + |>;|2 , 0 = toxT\\y\l\x\), Ö ^ a r g x , 02 = arg>;. 

It resembles the 7-form of H. Federer's proof [F2, §6.3] after H. 
B. Lawson [L, §5] that the cone over S3 x S3 is area-minimizing. 
At any point in our cone C, 6 = n/4, and (p{njA) = drAdO{ Ad62 

is precisely dual to each unit tangent £0 to C . Hence 

< ^ « K P ) ) < I < * K ) , 
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with equality whenever £ = £0. Thus (1) holds at points p G C . 
Unfortunately, for p £ C (for example 6 = 7c/8), the sin4ö 
term, which is necessary to make (p closed, tends to make cp big. 
In order for (1) to hold, the largeness of g>(n/8) must be somehow 
compensated for by the largeness of 0(7r/8). 

Establishing the estimate (1) at all points almost always is a 
main difficulty. 

For the case of area, the right-hand side is 1, and the estimate 
becomes \(p(p)\ < 1, independent of <*. For a general integrand 
<t>, the estimate involves both p and t; . This difficulty explains 
why calibrations have not been applied specifically to integrands 
other than area before. 

We handle this difficulty with a lemma that associates with (p 
the function on unit vectors 

G(w) = sup{\q>(p)\:w is the oriented unit normal 

to the (n - l)-plane dual to <p{p)}. 

The lemma says that the desired estimate ( 1 ) holds if the graph of 
G lies inside the Wulff crystal W(<b), thus reducing the required 
estimate to a single parameter. 
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