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AND GEODESIC FLOWS 
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INTRODUCTION 

Topological and metric entropies are among the most impor
tant global invariants of smooth dynamical systems. Topological 
entropy characterizes the total exponential complexity of the orbit 
structure with a single number. Metric entropy with respect to an 
invariant measure gives the exponential growth rate of the statis
tically significant orbits. The knowledge of entropies, especially 
in low-dimensional cases, provides a wealth of quantitative struc
tural information about the system. Such information includes the 
growth rate of the number of periodic orbits [K 1], "large horse
shoes" [K 3], the growth rate of the volume of cells of various 
dimensions ([Mn] for geodesic flows, [Y] in general), ergodic com
ponents, and factors with very stochastic behavior [Pe, Si], etc. 

Unfortunately, because the entropies are defined in global 
asymptotic terms, a priori, we do not expect them to change 
smoothly when the system is perturbed, even in a very nice topol
ogy like C°° or Cw (real analytic). 

There are several results concerning the regularity of entropy for 
general diffeomorphisms and flows on compact manifolds. Misi-
urewicz [Mi 1] constructed examples to show that the topological 
entropy, h ' Diffoo(M") —• R is not continuous for n > 4 . It 
seems unknown, although unlikely, whether entropy is continu
ous for n = 3 . Yomdin [Y] and Newhouse [N] have proved that 
ht : DiSQO(Mn) —> R is upper-semicontinuous for n>2. Katok 

[K 1, K 3] has shown that for surfaces, h : Diff2(M ) —• R is 
lower-semicontinuous. By combining these two results, one sees 
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that hXop: Diffoo(M ) —• R is continuous. This result also holds 
for C°° flows on three-dimensional manifolds. 

Misiurewicz [Mi 2] and Margulis (see [Y] for details) also 
proved that A : Diffr(M

n) —• R is not upper-semicontinuous 
in the Cr topology ( r finite) for n>2. Misiurewicz [Mi 2] has 
shown that for general C flows on Mn , k < oo and n > 3, hx 

need not be continuous. It is unknown whether ht : DifFr(Afw) —> 
R is upper-semicontinuous on a residual set for n > 3 , or whether 
h : Diifoo(M

A2) —• R is continuous on a residual set for n > 3 . 

For uniformly hyperbolic dynamical systems (i.e., Axiom-^4 
and Anosov diffeomorphisms and flows), the global orbit structure 
is stable under small perturbations. This easily implies that the 
topological entropy and the metric entropies with respect to natural 
invariant measures such as Liouville measure in the Hamiltonian 
case, Bowen-Ruelle measure for attractors, etc., change Holder 
continuously. 

The aim of this paper is to establish higher regularity results 
for the entropies of uniformly hyperbolic systems. Since the en
tropies determine, in a profound way, large elements in the global 
orbit picture of the system (see paragraph one), these elements 
change smoothly. We also deduce that the Bowen-Margulis mea
sure changes smoothly in the weak topology. Our results set the 
stage for identifying some particularly remarkable ("rigid") dy
namical systems by looking at critical points, extremal values, etc. 
for the entropy functions. In this direction, we obtain convenient 
formulas for the first derivatives for the topological and Liouville 
entropies in the case of geodesic flows on negatively curved man
ifolds. This enables us to characterize the critical points for the 
topological entropy for negatively curved surfaces. For real ana
lytic systems, the holomorphic structures associated with the en
tropies provide new and potentially very useful invariants of the 
orbit structure. 

We state our results for Anosov systems. Those results which 
are not specific to geodesic flows can be extended in a straight
forward way to the more general case of Axiom-yl systems. To 
simplify notations, we talk about differentiability and analyticity 
along one parameter families, i.e., in the Gateaux sense. In fact, 
all our results carry over to Banach manifolds of maps and yield 
differentiability and analyticity in the Frechet sense. 
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BACKGROUND ON ANOSOV SYSTEMS 

Let M be a compact C°° Riemannian manifold and let 
0': M -+ M be a C^ flow (k > 1). We call this flow Anosov 
if there is a continuous splitting TM = E° ® Es © isw into D, 
invariant subbundles such that: 

(a) E° is the one-dimensional distribution tangent to the flow. 
(b) There exist C, X > 0 such that for t > 0: 

||Zty'(t;)||<C<rA>||, <;e£5 

and 
||£ty'(f)|| >Ce"A ' | | t; | | , i/€l?M. 

The most important examples of Anosov flows are the geodesic 
flows for manifolds with negative sectional curvature [A]. 

Anosov systems are structurally stable and form an open sub
set in the C1 topology of flows. They possess a unique measure 
of maximal entropy usually called the Bowen-Margulis measure. 
Margulis [Ma] and Bowen [B 2] have shown that the topological 
entropy of an Anosov flow, htop(</>), has the following realization: 
Let P(T) = number of closed trajectories of (/> with (prime) 
period < T. Then Atop(0) = l imi t r _ > o o ( l / r ) logP(r) . The sub-
bundles Es and Eu are uniquely integrable but in general they 
are only Holder continuous. Since the integral manifolds of these 
subbundles (stable and unstable manifolds) profoundly determine 
the dynamical behavior, the main challenge in obtaining regularity 
results is to bypass the lack of regularity for the foliation structure. 

SMOOTHNESS OF TOPOLOGICAL ENTROPY 

Theorem 1 [KKPW]. Let M be a compact n-dimensional man
ifold and let {(/)[}, -e < X < e (e sufficiently small) be a Cw 

(real analytic) perturbation of a Cw Anosov flow <// = </>Q. Then 

We give two proofs of Theorem 1. The first proof uses zeta 
functions and complex analysis and only works for Cw perturba
tions. This proof yields valuable insight into how the periods of 
closed trajectories change when the flow is perturbed. We also be
lieve that the techniques in this proof may lead to advances in the 
study of qualitative properties of holomorphic dynamical systems. 

Sketch of Proof. If $ is an Anosov flow on M, we define d(s) = 
I~[T(1 - exp(-s/(r))), where /(r) is the least period of the closed 



288 A. KATOK, G. KNIEPER, M. POLLICOTT, AND H. WEISS 

orbit T , s is a complex variable, and the Euler product is over all 
closed orbits. d(s) is the reciprocal of the zeta function associ
ated to (j) . It is easy to prove that d(s) defines a nonvanishing 
holomorphic function for re(s) > hx {(j>) [PP]. Pollicott [Po], fol
lowing ideas of Ruelle [R], has shown that d{s) has a holomor
phic continuation into a slightly larger half plane with a zero at 
s = hiop(4>). To study the regularity of topological entropy under 
perturbations, we study how the zeros of d(s) vary. The proof 
has four main steps: 

Step 1 . Show that d(X, s) is real analytic in X for re(^) suf
ficiently large. We need to study the function X —> lx{x), i.e., the 
function which assigns to each X the least period of the closed 
trajectory of <f)x corresponding (under structural stability) to the 
closed trajectory r of </>Q . It is easy to show that for each fixed 
T , this function is real analytic, and hence has a holomorphic ex
tension to a neighborhood of (—e, e). We use symbolic dynamics 
to find an open set V in C which contains (—e, e) on which all 
least period functions have holomorphic extensions. This allows 
us to prove that the Euler product converges uniformly and hence 
defines a holomorphic function in V. The restriction of d(X, s) 
to V n ( -e , e) is real analytic. 

Step 2. For each X e (—e, e), apply Pollicott's result to holo-
morphically continue d(X, s) to a larger half plane. Care must 
be taken to ensure uniformity of the extension. We denote the 
extended function d(X, s). 

Step 3 . Show that d(X, s) is real analytic in X. This step 
requires a deep result of Bernard Shiftman [Sh] on the dependence 
of analytic continuation on an external parameter. 

Step 4 . Conclude that the zeros hx (X) of d(X, s) vary real 
analytically in X. 

Theorem 2 [KKPW]. Let M be a compact n-dimensional mani
fold and let { ^ } , -e < X < e (e sufficiently small) be a C + 

perturbation ofaC+ Anosov flow <j> = </>Q, 1 < k < oo. Then 
AtoP(^i) is Qk ' 
Sketch of proof. The proof of Theorem 2 also works in the Cw 

case, and gives a second proof of Theorem 1. We first use Markov 
partitions [B 1] to reduce the problem to symbolic flows. Our 
strategy, which was influenced by the work of Ruelle, is to show 
that the map (A,x) »-• P(—xrk) is Ck , where rx denotes the 
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return map between sections for </>[ (the height function over HA ), 
and P(f) denotes the pressure of ƒ . It is easy to show that 
P(-xrx) = 0 implies x = hlop(X). We then apply the Implicit 

Function Theorem to conclude that h (X) is C . 
Step 1. Show that the map CaÇLA) -• R defined by ƒ ^ P(f) 

is analytic [R]. 
Step 2. Show that the map (—e,e) —> Ca(LA) defined by 

I H ^ is Ck . This entails showing that the maps obtained from 
structural stability depend C on the perturbation parameter in 
the Ca topology of maps. The proof of this result also uses the 
Implicit Function Theorem: The nondegeneracy condition is that 
the graph transform induced by the time one map of an Anosov 
flow be hyperbolic on Ca sections of the tangent bundle. 

2 2 

In Theorem 2, we require a C perturbation of a C Anosov 
flow to ensure that the topological entropy changes in a C way. 
Katok, Knieper, and Weiss [KKW], using different methods, prove 
a stronger result. They show that a C perturbation results in a 
C change in entropy. They also find the following useful formula 
for the first derivative of topological entropy: 
Theorem 3 [KKW]. Let <j) be a C Anosov flow on a compact n-
dimensional manifold M and let {&[}, -e < À < e (e sufficiently 
small ) be a C perturbation of <j) = </>Q. Then hx (<j)x) is C 
and 

di , ( 0 ) / 
J M 

- h (0) ƒ da^p) 

o 
A=0 

where ju0 denotes the Bowen-Margulis measure (the measure of 
maximal entropy) for (f> and ak(p) denotes any function which, 
when integrated along orbits of <\> , gives the time reparametrization 
in structural stability. 

Theorem 4 [KKW]. Let (Mn , g) be a compact Riemannian man
ifold of negative sectional curvature, and let {gÀ} , -e < X < e (e 
sufficiently small) be a C perturbation of g = gQ. If §x denotes 
the geodesic flow associated to gÀ, then Atop(^A) is C and 

afttopW 
di 

-Atop(°) f dg,(v,v) 
is I 2 JSMQ dk 

BM 

j BM 

u=o 
where JUQ1V1 denotes the Bowen-Margulis measure (the measure of 
maximal entropy) for <$ . 
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The proofs of Theorems 3 and 4 are based on obtaining a good 
estimate of how the periods of most closed orbits change when you 
perturb the flow, most in the sense of enough to give topological 
entropy. The estimate follows from the methods which the first 
author developed in [K 1] and [K 2]. 

The following result on the critical points of topological entropy 
is an application of Theorem 4. 

Theorem 5 [KKW]. Let 3$X{M ) denote the submanifold of nega
tively curved metrics on a compact surface M having area equal to 
1. Then h : âlx(M ) —> R has a critical point at g e <9ê{(M ) if 
and only if g is a metric of constant negative curvature. 

Theorem 6 [KKW]. Let (Mn , g) be a compact n-dimensional Rie-
mannian manifold with no conjugate points, and let {gx}, -e < 
X < e ( e sufficiently small) be a C perturbation of g = gQ. Then 
/ztop(0A) is Lipschitz. 

The proof of Theorem 6 is based on Manning's formula [Mn] 
and a simple geometric estimate. 

SMOOTHNESS OF ENTROPY, PRESSURE, AND GIBBS MEASURES 

Let M be a compact «-dimensional manifold and let {4>[}, 
-e < X < e (e sufficiently small) be a Ck+l perturbation of a 
Ck+l Anosov flow <j> = ^ . Let {Hx} be a family of Holder 

homeomorphisms which is C in A and which realizes the orbit 
equivalence between (/)[ and <j> . The following rather technical 
result provides a useful generalization of Theorems 1 and 2. 

Theorem 7. Let {fÀ} be a family of Holder continuous functions 
such that the map (-e, e) —• Ca(Mn) defined by X —• fx o Hk is 

C . Then the pressure function X -* P(fx, (j>\) is C . The same 
holds for real analytic families. 

Corollary 1. Let f e C +{(Mn). Then the pressure function X —> 
P{f ,<!>[) is Ck. 

Corollary 2 (Gibbs measures are weakly smooth). For C + fam

ilies of Anosov flows {$[} and fixed p e C +l(Mn), the map 

( - e , e ) x Ck+\Mn) -> R defined by (A, / ) -• jMpdjuÀ f is 

C ~{, where \ix f denotes the (j)\ Gibbs state for ƒ . 
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Corollary 3 (Smoothness of entropy for Gibbs states). For C +1 

families of Anosov flows {$[} and fixed feC + (Mn), the func

tion k->h„ is C ~{, where hn denotes the measure theoretic 

entropy with respect to the (j>\ Gibbs state for ƒ . 

SMOOTHNESS OF METRIC ENTROPY FOR LIOUVILLE MEASURE 

Knieper and Weiss have investigated the regularity of the mea
sure theoretic entropy h for C perturbations of geodesic flows 
and Anosov flows which possess a smooth invariant measure JU . 
The main result [KW 2] combines a parametric version of the 
Hirsch-Pugh-Shub Cr,a Theorem [HP 1] along with Sinai's en
tropy formula to show that metric entropy possesses at least as 
much smoothness as the individual stable and unstable foliations, 
as long as the smoothness follows from a global contraction theo
rem (graph transform). If we combine this result with results of 
Hirsch and Pugh [HP 2] on the smoothness of the foliations for 
geodesic flows in negative curvature, we obtain the following theo
rem on the smoothness of metric entropy with respect to Liouville 
measure: 

Theorem 8 [KW 2]. 

(i) Let (M , g) be a compact negatively curved surface, and 
let {gx}, -e < X < e (e sufficiently small) be a C per
turbation of g = gQ. Then h^ (</>A) is C ,a for all a < 1. 

(ii) Let (Mn , g) be a compact n-dimensional manifold with 
negative sectional curvature - 4 < K < - 1 , and let {gÀ} , 
- e < X < e be a C3 perturbation of g = g0 through 
metrics having negative sectional curvature - 4 < Kx < - 1 . 
Then h (</>[) is C 1 , r \ where a = a(g,gÀ). 

The following theorem was a precursor to Theorem 8. 

Theorem [KW 1]. Let (M , g) be a compact negatively curved 
surface, and let {gÀ}, -e < X < e (e sufficiently small) be a C3 

perturbation of g = gQ. Then h^ (</>A) is C , where h^ {(j)x) de
notes the measure theoretic entropy of the gx geodesic flow with 
respect to Liouville measure. 

We give a very geometric proof of this result. We use Pesin's 
entropy formula to reduce the problem to studying how the nor-
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mal curvature of the stable and unstable horocycles orthogonal to 
a fixed unit tangent vector changes when the metric is smoothly 
perturbed. We consider the corresponding question for circles of 
radius r orthogonal to a fixed unit tangent vector and let r f o o . 
We then justify several limiting operations. Along the way, we 
obtain an integral formula for the derivative. 

Gerhard Knieper has recently proved that measure theoretic en
tropy (with respect to Liouville measure) is twice differentiable at 
negatively curved locally symmetric spaces, and he has an explicit 
formula for the second derivative at constant negatively curved 
metrics. 

Theorem 9 [Kn]. 

(i) Let (Mn, g) be a compact locally symmetric space with 
negative sectional curvature and let {gÀ} be a C°° pertur
bation of g = gQ. Then h ((f>x) is twice differentiable at 
X = 0. 

(ii) Let (Mn , g) be a metric of constant negative curvature k0 

and let {gÀ} be a C°° perturbation of g = g0 preserving 
the Riemannian volume. Furthermore, let s{X) denote the 
total scalar curvature of gx. Then 

a2*„.(*l> 

J'S.*))1 i f + 5 (^V>) ) , 

where Hx(v) denotes the second fundamental form of the unstable 
horosphere through v. 

REFERENCES 

[A] D. Anosov, Geodesic flows on closed Riemannian manifolds with negative 
curvature, Proc. Steklov Inst. Math. 90 (1967), 235. 

[B 1 ] R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 ( 1972), 
429-459. 

[B 2] , Periodic orbits for hyperbolic flows, Amer. J. Math. 94 (1972), 1-30. 

[HP 1] M. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets, Proc. Sympos. 
Pure Math. XIV (1968), 133-165. 

[HP 2] , Smoothness of horocycle foliations, J. Differential Geom. 10 (1975), 
225-238. 



DIFFERENTIABILITY OF ENTROPY FOR ANOSOV AND GEODESIC FLOWS 293 

[K 1 ] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomor-
phisms, Publ. Math. Inst. Hautes Études Sci 51 (1980), 137-173. 

[K 2] , Four applications of conformai equivalence to geometry and dynam
ics, Ergodic Theory Dynamical Systems Conley Memorial Issue 8* (1988), 
139-152. 

[K 3] , Nonuniform hyperbolicity and structure of smooth dynamical systems, 
Proc. of International Congress of Mathematicians 1983, Warszawa, 2, pp. 
1245-1254. 

[KKPW] A. Katok, G. Knieper, M. Pollicott, and H. Weiss, Differentiability and 
analyticity of topological entropy for Anosov and geodesic flows, Invent. Math., 
98 (1989), 581-597. 

[KKW] A. Katok, G. Knieper, and H. Weiss, Regularity of topological entropy for 

geodesic and Anosov flows, preprint. 

[Kn] G. Knieper, On the second derivative of metric entropy at locally symmetric 
spaces, in preparation. 

[KW 1 G. Knieper and H. Weiss] Differentiability of measure theoretic entropy: I, 
Invent. Math. 95 (1989), 579-589. 

[KW 2] , Smoothness of measure theoretic entropy for Anosov flows, preprint. 

[Mn] A. Manning, Topological entropy for geodesic flows, Ann. of Math. 110 

(1979), 567-573. 

[Ma] G. Margulis, Applications of ergodic theory to the investigation of manifolds 
of negative curvature, Functional Anal. Appl. 3 (1969), 335-336. 

[Mi 1] M. Misiurewicz, On non-continuity of topological entropy, Bull. Acad. Polon. 
Sci., Ser. Sci Math. Astro. Phys. 19 (4), (1971), 319-320. 

[Mi 2] , Diffeomorphisms without any measure with maximal entropy, Bull. 
Acad. Polon. Sci., Ser. Sci. Math. Astro. Phys. 21 (10), (1973), 903-910. 

[N] S. Newhouse, Continuity properties of entropy, Ergodic Theory Dynamical 
Systems Conley Memorial Issue 8* (1988), 283-300. 

[PP] W. Parry and M. Pollicott, An analogue of the prime number theorem for 
closed orbits of Axiom A flows, Ann. of Math. 118 (1983), 573-592. 

[Pe] Y. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Rus
sian Math. Surveys 32 (4), (1977), 55-114. 

[Po] M. Pollicott, Meromorphic extensions of generalized zeta functions, Invent. 

Math. 85 (1986), 147-164. 

[R] D. Ruelle, Thermodynamics formalism, Addison-Wesley, Reading, Mass., 
1978. 

[Sh] B. Shiffman, Separate analyticity and Hartogs theorems, preprint. 

[Si] J. Sinai, On weak isomorphism of transformations with invariant measures, 
Math. USSR Sb. 63 1, (1964), 23-42. 

[Y] Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 ( 1987), 285-300. 

CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA CALIFORNIA, 91125 

FREIE UNIVERSITAET BERLIN, ARNIMALLE 3, 1000 BERLIN 33 

CENTRO DE MATHEMATICA DA UNIVERSIDADE DO PORTO, PRASA GOMES 

TEIXEIRO, 4000 PORTO, PORTUGAL 

CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91125 




