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Addison-Wesley has just reissued Serre's 1968 treatise on /-adic 
representations in their Advanced Book Classics series. This cir­
cumstance presents a welcome excuse for writing about the subject, 
and for placing Serre's book in a historical perspective. 

The theory of /-adic representations is an outgrowth of the 
study of abelian varieties in positive characteristic, which was ini­
tiated by Hasse and Deuring (see, e.g., [3, 1]) and continued in 
Weil's 1948 treatise [12]. Over the complex field C, an abelian 
variety A of dimension g may be viewed as an (algebrizable) 
complex torus W/L, where L « Z 8 is a lattice in the C-vector 
space W of dimension g. The classical study of A relies heavily 
on the lattice L, which is intrinsically the first homology group 
H{(A, Z) . However, the quotients L/nL (for n > 1) have a 
purely algebraic definition. Indeed, over C the quotient L/nL is 
canonically the group 

A[n] = {PeA\n-P = 0} 

of «-division points on A. Over an arbitrary field K, one de­
fines A[n] as the group of points on A (with values in a sepa­
rable closure K of K) of order dividing n. When n is prime 
to the characteristic of K, A[n] is a free Z/«Z-module of rank 
2g = 2dim^4, just as in the classical case. Moreover, the mod­
ule A[n] carries natural commuting actions of the Galois group 
GalÇK/K) and the ring EndK(A) of A^-endomorphisms of A. 
Most information provided by L can be extracted from the col­
lection of groups A[lu] {y > 1), where / is a fixed prime which 
is different from the characteristic of K. 
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In the 1950's, J. Tate suggested packaging together the groups 
A[I'] in the projective system 

• -^A[l3]^A[l2]^A[l] 

in which the maps are induced by multiplication by / . The pro­
jective limit T((A) = lim A[lu] is a free rank-2g module over 
Z7 (the Z,-adic Tate module attached to A ). The Q;-adic Tate 
module 

Vl(A) = Tl(A)^ZiQl 

is then a (^-vector space of dimension 2g. The natural continu­
ous representation 

pltA: Gal(K/K) -+ Aut Tt(A) C Aut V^A) 

is the Uadic representation of GauÇK/K) attached to A . 
The image of this representation is a compact, hence closed, sub­

group of the /-adic Lie group Aut Vt(A) « GL(2g, Q ;) . It is there­
fore a Lie subgroup of Aut Vt{A). Its Lie algebra g; is then a subal-
gebra of aKV^A)) « gl(2g 9 Qt) which measures plA(Gdl(K/K)) 
"up to finite groups." In particular, Q{ remains unchanged if K 
is replaced by a finite extension of K in K. 

A fundamental problem is to determine the Lie algebras gz at­
tached to A when the base field K is a number field. The conjec­
tured "answer" involves fixing an embedding K <—• C and exploit­
ing the resulting interpretation of Vl = Vt{A) as L o Q / , where L 
is the lattice H{(A(C), Z) , as above. The Hodge decomposition 
of L ® C defines a certain algebraic subgroup MT(A) of the alge­
braic group GLL(g)Q « GL(2g) over Q. This is the Mumford-Tate 
group of -4/C. Its Lie algebra is a subalgebra f) of #l(L ® Q), so 
that fy = f) (8) Q[ is a subalgebra of fll(^). An important conjec­
ture of Mumford and Tate [5, 7] states that g; = fy inside fll(*/) 
for each prime / . In particular, the family of Lie algebras Q1 is 
conjectured to be "independent of / ." 

In proving special cases of this conjecture, it has often been 
useful to deal with the entire system \pt A) as / varies, rather 
than to work with a single p{ A . Transferring information from 
one p{ A to another is frequently possible because of the follow­
ing compatibility, which was first stressed by Y. Taniyama [11]. 
Consider a prime ideal p of the ring of integers of K and try 
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to reduce A "mod p." The attempt succeeds for all p outside a 
finite set of primes (those at which A has bad reduction). If p 
lies outside this exceptional set, the representation p{ A is first of 
all unramified at p whenever / is prime to p. This means that 
we can associate to p a distinguished conjugacy class in the image 
of pj A , the set of Frobenius elements for p in the image. Taking 
the characteristic polynomial of any such Frobenius element, we 
obtain a polynomial Pp ((T) e Q^T]. The essential fact is that 
this polynomial lies in Q[T] and depends only on p, but not on 
the prime number / . This compatibility property is proved by 
regarding Pp l as the characteristic polynomial of the Frobenius 
endomorphism of A mod p , and applying results of Weil. 

The Mumford-Tate conjecture was first proved for complex 
multiplication (CM) abelian varieties as a corollary of the main 
theorems of Shimura and Taniyama [10]. With this case under­
stood, the simplest case to attack was that for which A is an el­
liptic curve (g = 1) with no complex multiplications, i.e., one for 
which eEnd^(A) = Z . This case was treated by J.-P. Serre in 
the book under review, or rather in the original 1968 Benjamin 
edition of the book. Serre showed that g; = fll(*/) ~ 0^(2, Qz), by 
an argument which we now outline. 

The first point is that, for non-CM elliptic curves, Vl is irre­
ducible as a ^-module. This is a theorem of Shafarevich, which 
in turn depends on Siegel's theorem on the finiteness of integral 
points on curves. The second point is that g7 cannot be contained 
in the subalgebra sl(l^) of 8l(*/), because of information on the 
determinant of pl A which is furnished by the em pairings of 
Weil. This leaves two possibilities for g7 : either Q( is the desired 
gl(2, Qj), or else fy is a nonsplit Cartan subalgebra of gl(2, Q;) 
(an abelian semisimple algebra coming from a quadratic field ex­
tension of Q, ). The second possibility occurs for "half the prime 
numbers / in the excluded case of an elliptic curve with complex 
multiplication—those / which remain inert in the field of com­
plex multiplication. The other primes / in the CM case lead to 
split Cartan subalgebras of g 1(2, Q7), which act reducibly on their 
representation spaces. Serre showed that if at least one gz is a 
Cartan subalgebra, then there are many gz which are split Cartan 
subalgebras, even in the non-CM case. Once proved, this asser­
tion eliminates the second possibility in the non-CM case, since 
split Cartan subalgebras of g[(2, Q;) are incompatible with Sha-
farevich's theorem. To prove the assertion, Serre made a detailed 
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study of semisimple abelian /-adic representations with certain lo­
cal properties; this explains their appearance in the title of the 
book. 

Since the publication of Serre's book in 1968, there have been 
numerous advances in the theory of /-adic representations at­
tached to abelian varieties over number fields. The most spec­
tacular are contained in Faltings' paper on the Mordell Conjecture 
[2], which proves two important facts about the representations 
pl A . First of all, Faltings proved that each pl A is a semisimple 
representation of Gal(K/K) over Q ; . Secondly, Faltings proved 
the Tate Conjecture on endomorphisms of abelian varieties, which 
states that the natural map 

E n d ( ^ ) 0 Q / ^ E n d 0 / ( F / ) 

is an isomorphism for all / . This fact immediately rules out the 
Cartan subalgebra case in the elliptic curve argument, thus prov­
ing that Q( = 0l(2, Qj) in the case of non-CM elliptic curves. 
Similarly, the theorems of Faltings easily prove the conjecture 
0/ = *)<8>Q/ in the case of abelian varieties with real multiplications: 
A 's whose endomorphism algebras are totally real number fields of 
degree 2dim(,4) over Q. Finally, using Faltings' theorems, and 
a family of new ideas suggested by papers of Yu. Zarhin, Serre 
proved several years ago [9] that a7 = f) ® Qz whenever A has no 
nontrivial endomorphisms and the dimension of A is 2, 6, or an 
odd number. 

Despite these recent developments, the 1968 book of Serre is 
hardly outmoded. For one thing, as the cover of the new edition 
reminds us, it's the only book on the subject. More importantly, 
it can be viewed as a toolbox which contains clear and concise 
explanations of fundamental facts about a series of related topics: 
abstract /-adic representations, Hodge-Tate decompositions, ellip­
tic curves, L-functions, etc. The algebraic groups introduced in 
the book form the toric part (or "Serre group") of the Taniyama 
group introduced in [4] (see also [6]). The tools introduced in this 
book have been, and will continue to be, extremely useful in other 
contexts, such as the study of /-adic representations arising from 
étale cohomology groups Hl(X-^, Qz) with / > 1 (in particular, 
representations associated to modular forms). The book remains 
a valuable textbook and reference. 

The new edition differs from the old one in minor ways. First, 
misprints in the first edition have been corrected. (A list of errata 
to the first edition was given at the end of [8].) Secondly, a number 
of remarks concerning recent developments have been squeezed 
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into the original text. (They are prefaced by arrows —• and ap­
pear in heavy type.) Thirdly, a 42-item bibliography of post-1968 
articles has been added. Finally, a new two-page "Special Preface" 
begins the volume. In this preface, the condition " End^ A = Z " 
should read " End-^A = Z ," as was pointed out to me by the au­
thor. 
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