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addressed, not least for its remarkably complete bibliography of 
the whole subject of reproducing kernels. 
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Geometric inequalities, by Yu. D. Burago and V. A. Zalgaller. 
(Translated by A. B. Sossinsky), Springer-Verlag, Berlin, Hei­
delberg, New York, London, Paris, Tokyo, 1988, xiv + 331 pp., 
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This volume presents us with a masterful treatment of a subject 
that is not so easily treated. The basic difficulty is that "geomet­
ric inequalities" is not so much a subject as a collection of topics 
drawing from diverse fields and using a wide variety of methods. 
One can therefore not expect the kind of cohesiveness or of struc­
tural development that is possible in a single-topic book. At most 
one hopes for a broadly representative selection of theorems orga­
nized by approach or content, with a good accounting of each and 
ample references for following up in any given direction; and that 
is just what we get. 

All the classical topics are found here: the isoperimetric inequal­
ity in its many guises, the Brunn-Minkowski inequality with its 
various consequences, area and volume bounds of different kinds. 
There are also many inequalities involving curvatures: Gauss, 
mean, Ricci, etc. The methods include those of differential ge­
ometry, geometric measure theory, and convex sets. In each of 
these areas, the book is right up to date, including the latest results 
to the time of writing. 

In addition to these classical topics, there are some more mod­
ern ones. Chapter 3 includes an extended and illuminating discus­
sion of various notions of area and measure, including the newer 
approaches dating from the 1960s: the perimeter of Caccioppoli 
and de Giorgi, integral currents of Fédérer and Fleming, Almgren's 
varifolds. Their relative merits and disadvantages are carefully and 
even-handedly pointed out. Chapter 6, on Riemannian manifolds, 
provides a complete proof of Margulis' Theorem giving a lower 
bound for the volume of a compact negatively curved manifold in 
terms of a lower bound on the curvature. 
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A few post-modern results are at least alluded to, in particular 
some of those from Gromov's paper on "Filling Riemannian man­
ifolds" which appeared after the original Russian edition of this 
book, but before the English version was written. 

Another feature of the English edition of this book, not present 
in the original, is an extended (25-page) Addendum to Chapter 4 
written by A. G. Khovanskiï. He provides a fairly detailed de­
scription of one of the prettiest recent developments in the sub­
ject: some unexpected links between geometric inequalities and 
algebraic geometry. The key notion is that of "mixed volumes" in­
troduced by Minkowski. On first acquaintance the idea of "mixed 
volume" seems a bit strained, without obvious geometric content 
except in special cases. However, it arises in a natural fashion 
in computations of Minkowski sums of domains, and has proved 
a useful concept in the field of geometric inequalities, although 
without must influence on the wider world of mathematics. Then 
in 1975, D. M. Bernstein found that it provided a geometric in­
terpretation of an old formula of Minding concerning the num­
ber of solutions to a system of polynomial equations. Specifi­
cally, here is what Bernstein proved. To each polynomial P in n 
variables, associate a polyhedron in Rn—the Newton polyhedron 
of P—defined to be the convex hull of the set of lattice points 
(m{, ... , mn) such that P contains a term cz™1 • • • z™n, c ^ 0. 
One can also allow negative exponents, in which case P is called a 
Laurent polynomial. Note that a nonzero constant term in P cor­
responds to the origin in Rn . What Bernstein proved is that for a 
general system of n polynomial equations in n complex variables, 
Pk = 0, k = I, ... , n, where each Pk has a nonzero constant 
term, the number of complex roots is equal to the mixed volume of 
the corresponding Newton polyhedra multiplied by n\. (A suitable 
modification works if the constant term is missing.) 

Three years later, algebraic geometry repaid its debt to Minkow­
ski when independently, Khovanskiï in Moscow and Tessier in 
Paris showed how one can use the Hodge index theorem to prove 
a famous inequality on mixed volumes that had originally been 
obtained independently by A. D. Alexandrov and Werner Fenchel 
in 1936. (The Alexandrov-Fenchel inequality in turn implies the 
isoperimetric inequality and a series of other classical inequalities.) 
Khovanskiï gives a very clear outline of the argument, with a num­
ber of explicit examples to illustrate the concepts introduced. The 
one fault I would find with this section is the cursory treatment of 
Bézout's Theorem, which for most readers would be the best point 
of entry into the subject, as the result on intersections most easily 
stated and most likely to be familiar. It says that the number of 



144 BOOK REVIEWS 

solutions of n polynomial equations in n dimensions is just the 
product of the degrees. Of course, in order to get such a simple 
statement, one has first of all to define and use the notion of multi­
plicity of intersection, and second, projectivize everything in order 
to count intersections at infinity. That is done by introducing ho­
mogeneous coordinates, making the polynomials homogeneous, so 
that the corresponding Newton polyhedra have a special form. 

It would have been helpful to have some of that explained, 
preferably at the beginning of the section. 

On the whole, this book is to be commended for choice of top­
ics, clear exposition, and relatively few typographical errors. The 
translation is generally good and very readable. It has a bit the 
flavor of a nonnative speaker who knows the language well, but 
is tripped up by subtle distinctions—the kind that gives away the 
underground agent in spy stories—"conclusive" for "definitive," 
"far going" for "far reaching." Some of them can add charm: 
"wave" for "tilde," but when it comes to mathematical terminol­
ogy, I would have thought the editors might find someone to go 
through and standardize the terms, such as "integer current" for 
"integral current," and "unit" for "identity" element of a group. A 
reader being introduced to the terminology for the first time should 
be aware of possible discrepancies. 

One of the attractive, but also perilous features of this subject 
is that it is a game anybody can play, with little preparation. As a 
consequence, the same result is often proved, published, vanishes 
from sight, and then reproved, republished, sometimes repeatedly. 
For those of us working in the area at the time that André Weil's 
collected works were published a few years back, it was a surprise, 
that would have been a pleasant one, to discover that his very first 
paper was on the isoperimetric inequality, except that the theorem 
he proved is universally referred to as the Beckenbach-Radó the­
orem. It states that the standard isoperimetric inequality in the 
plane continues to hold for simply-connected domains on surfaces 
with nonpositive Gauss curvature. André Weil obtained the result 
seven years before Radó, but his paper was consigned to oblivion. 
During a year of fairly intensive and extensive library research 
on the subject of isoperimetric inequalities, I did not see a single 
reference to Weil's paper. The present book misses a chance to 
rectify that, but in other respects the bibliography is excellent and 
comprehensive. 

Of course the subject marches on. Two references that appeared 
in 1988, too late to make it into the present book, are the book 
Convex bodies and Algebraic geometry by Tadao Oda, and two 
long papers on isoperimetric inequalities in the journal Astérisque 
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by Sylvestre Gallot. But this book will clearly be the reference for 
some time to come. 
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Amenable Banach algebras, by J.-P. Pier. Pitman Research Notes 
in Mathematics Series, vol. 172, Longman Scientific and Tech­
nical, Harlow and New York, 1988, 161 pp., $47.95. ISBN 
0-582-01480-8 

The concept of amenability was first defined for locally com­
pact groups having evolved from the idea of a translation invari­
ant mean or average on the bounded L°°-functions on the real line 
used by von Neumann. If G is a locally compact group, then (left) 
Haar measure m induces a left translation invariant continuous 
positive linear functional on Ll(G), the space of m integrable 
functions. There is no such translation invariant linear functional 
on L°°(G), or on several other large spaces of bounded functions, 
for most locally compact groups G. The groups for which there is 
such a positive invariant mean were called amenable by M. M. Day 
(1950). The transition of amenability from groups to Banach al­
gebras arose from the transfer of Hochschild cohomology into this 
setting. 

If X is a Banach module over a Banach algebra A, then the 
first (continuous Hochschild) cohomology group Hl (A, X) is the 
quotient of the linear space of (continuous) derivations by the 
space of inner derivations. A derivation D from A into X is a 
linear operator from A into X such that D(ab) = aD(b) + D(a)b 
for all a, b in A, and D is inner if there is an x in X such 
that D(a) = ax - xa for all a in X. B. E. Johnson [7] showed 
that the amenability of a locally compact group G is equivalent 
to the first cohomology group Hl(Ll(G), X) being zero for each 
dual L1(G)-module X. One direction of the proof uses the in-


