
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 22, Number 1, January 1990 

PRODUCT FORMULAS, HYPERGROUPS, 
AND THE JACOBI POLYNOMIALS 

WILLIAM C. CONNETT AND ALAN L. SCHWARTZ 

If 3? = {pn}neNo (N0 = {0, 1, 2, ...}) is a sequence of or­
thogonal functions on a real interval I, we say that 3P has a 
product formula if for each s 9 t in 19 there is a Borel measure 
/i t with supp(/i ,) ç I such that 

for every « in N 0 . Such formulas are important because they give 
rise to a variety of measure algebras and the means to study their 
harmonic analysis. An important class of such formulas was estab­
lished by Gasper [8] for the Jacobi polynomials P^^\x) which 
are orthogonal on [ -1 ,1] with respect to the weight (1 - x)a 

x (1 + x)fi dx. These include Chebyshev, Legendre, and ultras-
pherical or Gegenbauer polynomials as special cases. The product 
formula for Jacobi polynomials has 1 as an identity in the sense 
that for all / in [ - 1 , l]/i{ t is the unit point mass concentrated 
at t, and it has continuous support in the sense that supp(//5 t) is 
a continuous function of (s, t). Moreover, the measures jus t are 
all positive if and only if 

(2) a > P > - 1 and either p > - 1 / 2 or a + P > 0. 

It is natural to ask which orthogonal polynomials have such prod­
uct formulas. The answer is a converse to Gasper's result: 

Theorem 1. If a family £P of orthogonal polynomials has a product 
formula with identity, continuous support, and nonnegative mea­
sures fis t then up to a linear change of variables, the members of 
3° are Jacobi polynomials with parameters a and p satisfying 
equation (2). 
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The proof of Theorem 1, as well as some of its applications will 
require the notion of hypergroups. A hypergroup is a measure alge­
bra more general then the convolution measure algebra associated 
with a group (for instance, a convolution of point masses need 
not be a point mass), but with enough structure to make harmonic 
analysis possible. 

To be precise, let H be a locally compact Hausdorff space 
and let M(H) denote the bounded Borel measures on H ; if 
ix G M(H), supp(/z) is the support of //. The unit point mass 
concentrated at s is indicated by Ss ; C(H) is the space of con­
tinuous complex-valued functions on H ; and CC(H) consists of 
all ƒ in C(H) with compact support. 

If M(H) is a Banach algebra with multiplication * (called a 
convolution), then (//",*) is a hypergroup if the following axioms 
are satisfied: 

(1) A convolution of probability measures is a probability mea­
sure. 

(2) The mapping (//, v) —• JU*V is continuous from M(H) x 
M(H) into M(H) where M(H) is given the weak topology with 
respect to CC(H). 

(3) There is an element e e H such that ôe*/u = ju*ôe = fi for 
every // G M (H). 

(4) There is a homeomorphic mapping s —> sv of H into itself 
such that s v v = s and e G supp(^5 * ôt) if and only if t = sw . 

(5) For n, v G M(H) (fi * v)y = vy * //v where //v is defined 
by 

f f{s)dn\s)= [ f(sy)d»(s). 
JH JH 

(6) The mapping (s, f) —• supp(J5 *5r) is continuous from H x 
/ / into the space of compact subsets of H as topologized in [14]. 
See [5, 6, 9 and 16] for more about hypergroups. 

There is a natural connection between product formulas and 
hypergroups. Suppose the hypotheses of Theorem 1 are satisfied. 
Define a product * on M (I) by 

(3) / / d ( , /*A ) = / / ( / / r f ^ ) d"(s)dW)> 
then (/ , *) is a hypergroup if we require the additional conditions: 
(i) there is e G I such that Pn(e) = 1 (n G N 0) , and (ii) 0 G 
supp(//5 ,) if and only if s = t [16]. ^ is the set of characters 
for this hypergroup in the sense that (1) and (3) imply 

jj Pn diy * X) = [jpn dS) {jpn dl) (n G N0). 
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The hypergroups arising from the ultraspherical polynomials are 
useful in studying certain stochastic processes on the sphere (see 
also [9]). 

Theorem 1 immediately yields the following characterizations 
of two classes of hypergroups (see [5] for definitions): 

Theorem 2. If (H, *) is a hypergroup with H a real interval which 
has polynomial characters of every degree\ then up to a linear change 
of variables, ( / / ,*) is one of the Jacobi polynomial hypergroups 
(H, *; a , P) with parameters a and P satisfying equation (2). 

Theorem 3. The only strong polynomial hypergroups (see [9]) are 
those that arise from the Jacobi polynomials with parameters a and 
p satisfying (2). 

Theorem 3 gives further credence to Heyer's remark [9, 3.7] that 
strong hypergroups are fairly rare. Thus results for strong polyno­
mial hypergroups [11, Theorem 4], or for hypergroups with poly­
nomial characters are no more than the corresponding results for 
the hypergroups arising from Jacobi polynomials for which there is 
already an extensive literature; e.g., [3, 4], and the references cited 
there. It is possible to give explicit formulas for the parameters 
a and P and the pn . We first observe that one consequence of 
Theorem 1 is that e must be one of the endpoints of I [16]: 

Theorem 4. Let 3° satisfy the hypotheses of Theorem 1 with iden­
tity e ; let a be the other endpoint of I, and let dn = \pn{e)j 
(e-a), then a = (d2-2d{)~

1 - 1, p = (2dl - \){d2-2dx)'
x - 1, 

and pn(t) = B%»>\t) = m - ! p j * - « ( t t ^ ) . 

We note that there are systems of orthogonal polynomials be­
sides the Jacobi polynomials which have product formulas. 

1. The generalized Chebyshev polynomials have a product for­
mula [10] which does not have support continuity since 
supp(/i1>_1) = {-l} but supp(//, _,) = [ - 1 , l - 2* 2 ]U[2 f 2 - l , 1] 
(see [12, p. 207]; (in that article, the notation for JLLS t is ps *pt ). 

2. The continuous ^-Jacobi polynomials [15] on H = [ - 1 , 1] 
have a product formula with a nonnegative absolutely continuous 
measure for all s, t e H and the support of the measure is always 
all of H, hence there can be no identity. 
Outline of proof of Theorem 1. The proof has two parts. First 
a technique inspired by [13] and exploited in [5] shows that the 
members of £P are the eigenfunctions of a second order linear 
differential operator. That is y = pn(t) satisfies 

(4) qy +py =Xny 
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with kn = / > > ) , p(t) = p{(t), q(t) = [X2/p2][p2(t) -Px{t)] -
LPI (OMIHPI (0 - 1] • Secondly we employ a result of Bochner [2] 
to show that the differential equation must in fact be the one as­
sociated with the Jacobi polynomials. 

If q = 0, the solutions of equation (4) are pn(x) = xn which 
are not orthogonal on any interval since these polynomials do not 
have simple zeros (see [18, Theorem 3.3.1]). 

If q is a nonzero constant, pn(x) = Hn(x)/Hn(e), where Hn 

is the nth degree Hermite polynomial. The condition q" = 0 
entails 

(5) p'2(e) = 2p[(e) 

which leads to a contradiction when one attempts to solve equation 
(5) for e . 

If q has degree exactly one then pn is the normalized Laguerre 
polynomial La

n{x)/La
n(e). Once more, equation (5) must hold, 

but this time it can be solved to obtain e = 0. The nonexistence 
of a product formula in this case follows from [1], (Theorem 6 
and the remarks following). 

Thus q must have degree exactly two. A linear change of vari­
ables transforms equation (4) into one of the forms 

(6) x2y" + (ô + ex)y' +Ày = 0. 

(7) JC(1 — x)y" + (ô + ex)y + Xy = 0. 

We shall eliminate the possibility of equation (6) by showing 
that if the differential operator L = t2(d2/dt2) + (S + et)d/dt has 
polynomial eigenvectors, they cannot be orthogonal. Bochner [2] 
considers two cases: 3 = 0 and ô ^ 0. 

If ô = 0, then L has polynomial eigenfunctions provided e = 
1 - k, / c = l , 2 , . . . , i n which case the eigenfunctions are of 
the form pn{x) = anx

n + bnx
k~n . These cannot be orthogonal 

polynomials since for n > k, the zeros of pn are not distinct (cf. 
[18, Theorem 3.3.1]). 

If ô ^ 0, it is no loss of generality to consider only S + et = 
(fc + 1)/ - 1. Then L has polynomial eigenfunctions unless k is 
a negative integer, and if -k £ N0 is fixed, these are given by 

i/=0 x 7 x 7 

It can be shown that these polynomials are not orthogonal because 
they do not satisfy an appropriate three-term recurrence (cf. [17, 
Theorem 1]). 
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Having eliminated all other possibilities, we conclude that the 
differential equation (4) must have been transformed into equation 
(7). If in that equation we make the change of variables x = 2t-1, 
we obtain a differential equation satisfied by y = P„^\x) (see 
[18, equation (2.1)]) with a = -2e - 20 - 1, p = 20 - 1, and 
A = /i(w + a + / ? + l ) / 4 , and the proof is complete. 

Remark. Slight modifications can be made in the proof to allow 
the hypotheses of Theorem 1 to be weakened as follows: 

1. Instead of assuming that e is an identity, it is enough to ask 
that for each t e I, fie t be concentrated on a single point. (It is 
not necessary to require that jue t be a unit mass or concentrated 
on the point t.) 

2. The support continuity may be replaced by 

lim(diam(supp/zc ,)) = 0. 

3. The combination of support continuity and nonnegativity 
may be replaced by the single condition fj{r-t)n dpts t(r) = o(s-e) 
for n > 2 . 

4. The condition that the polynomials satisfy a product formula 
can be replaced by the assumption that the weighted polynomials 
m(t)pn(t) satisfy a product formula, where m(t) is a fixed positive 
function on I. 

Proof of Theorems 2 and 3. The hypotheses of these theorems are 
by definition stronger than the hypotheses of Theorem 1, since the 
characters of a commutative hypergroup are necessarily orthogonal 
[6, Theorem 3.5]. The range for the parameters is the intersection 
of those given by Gasper in his studies [7, and 8] of the two Jacobi 
convolution structures. 

Proof of Theorem 4. The linear transformation x = (j)(t) = 
(a+e-2t)/(a-e) maps I onto [ - 1 , 1] and carries e to 1. Thus 
pn{t) = R„^\(j)(t)), and the relations are obtained by referring 
to the explicit formulas for the first two moments associated with 
Jacobi polynomials as given in [5, equations (1.10) and (1.11)]. 

REFERENCES 

1. R. Askey, Orthogonal polynomials and positivity, Studies in Applied Mathe­
matics 8, Wave Propagation and Special Functions, SIAM, 64-85 (1970). 

2. S. Bochner, Über Sturm-Liouvillische Polynomesysteme, Math. Z. 29 (1929), 
730-736. 

3. W. C. Connett and A. L. Schwartz, A multiplier theorem for Jacobi expansions, 
Studia Math. 52 (1975), 243-261. 



96 W. C. CONNETT AND A. L. SCHWARTZ 

4. , The Littlewood-Paley theory for Jacobi expansions. Trans. Amer. Math. 
Soc. 251 (1979), 219-234. 

5. , Analysis of a class of probability preserving measure algebras on compact 
intervals, Trans. Amer. Math. Soc. (to appear). 

6. C. F. Dunkl, The measure algebra of a locally compact hypergroup, Trans. 
Amer. Math. Soc. 179 (1973), 331-348. 

7. G. Gasper, Linearization of the product of Jacobi polynomials. II, Canad. J. 
Math. 32(1970), 582-593. 

8. , Banach algebras for Jacobi series and positivity of a kernel, Ann. of 
Math. 95(1972), 261-280. 

9. H. Heyer, Probability theory on hypergroups: a survey, Probability Measures 
on Groups VII, Proceedings Oberwolfach 1983, Lecture Notes in Math., vol. 
1064, Springer-Verlag, Berlin and New York, 1984. 

10. T. P. Laine, The product formula and convolution structure for the generalized 
Chebyshev polynomials, SIAM J. Math. Anal. 11 (1980), 133-146. 

11. R. Lasser, Bochner theorems for hypergroups and their applications to orthog­
onal polynomial expansions, J. Approximation Theory 37 (1983), 311-325. 

12. , Orthogonal polynomials and hypergroups, Rend. Mat. (7) 3 (1983), 185-
209. 

13. B. M. Levitan, Generalized translation operators, Israel Program for Scientific 
Translations, Jerusalem, 1964. 

14. E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 
(1951), 152-182. 

15. M. Rahman, A product formula for the continuous q-Jacobi polynomials, J. 
Math. Anal. Appl. 118 (1986), 309-322. 

16. A. L. Schwartz, Classification of one-dimensional hypergroups, Proc. Amer. 
Math. Soc. 103 (1988), 1073-1081. 

17. J. Shohat, The relation of the classical orthogonal polynomials to the polyno­
mials ofAppell, Amer. J. Math. 58 (1936), 453-464. 

18. G. Szego, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. vol. 23, 
Amer. Math. Soc, Providence, R.I., 1939. 

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF 
MISSOURI, ST. LOUIS, MISSOURI 63121-4499 


