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The real representations p{ and p2 of a finite group G are 
topological^ similar (written p{ ~ t p2) if there is a homeomor-
phism h : V(px) —• V(p2), where V(p.) denotes the vector space 
of the representation p., such that h(p{(g) • v) = p2(g) • h(v) 
for v G V(p{) and g G G (i.e. the representation spaces are 
equivariantly homeomorphic). 

De Rham [dR] conjectured that topological similarity implies 
the linear equivalence of the two representations, and proved some 
results in this direction. De Rham's Conjecture has been shown 
to be true in numerous special cases, e.g. G of exponent 2 or 
4 (easy), of exponent pr or 2pr with p an odd prime [Sch], or 
more generally if the exponent of G is odd or two times an odd 
number [HP or MR]. (A complete determination of those groups 
for which de Rham's Conjecture is always true is given in [CS4].) 

The first counterexamples to de Rham's Conjecture were given 
by the first two authors, for G = Z4q for any q > 1, between rep­
resentations of dimension > 9. The first three authors, together 
with the last, then give counterexamples over Z4q in all dimen­
sions > 6 for all q > 2 [CSSW]. (We show here that q > 2 is 
necessary for counterexamples in dimension < 9.) Thus, by [CS2], 
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six is the minimal dimension for nonlinear similarity (i.e. topo­
logical similarity between linearly inequivalent representations). 

Here, we restrict attention to cyclic 2-groups, G = Z2r, repre­
senting the opposite extreme from the odd-order theorem of [HP 
or MR]. We give a complete set of necessary and sufficient condi­
tions for topological similarity over such G. This gives the first 
complete classification of topological similarity over a group which 
admits nonlinear similarities. We also give the first construction of 
nonlinear similarities which systematically handles isotropy groups 
of arbitrarily high index in the representation spaces. And in fact, 
such isotropy groups are necessary for many of the examples we 
give below. (All previously known examples of nonlinear similari­
ties were obtained from those of [CS{ or CSSW] for cyclic groups 
or of [M] for quaternionic groups by either stabilization or taking 
induced representations. In all three cases, the basic constructions 
involve only isotropy of index < 2 outside the free part.) 

As an application of our main theorem we prove a conjecture 
of the first two authors [CS5]: 

Theorem 1. Let G = Zr act smoothly on a (mod 2) homology 
sphere. Then the tangent representations of G at any two fixed-
points are topologically similar. 

As another application of our main theorem, we give some re­
sults on the group RTop{G), which is the quotient of the real rep­
resentation ring RO(G) by the subgroup generated by all differ­
ences of topologically similar representations. Thus, RTop(G) is 
the Grothendieck group of topological equivalence classes of lin­
ear representations under direct sum. In particular, its calculation 
is equivalent to the stable topological classification of representa­
tions. The rank of RTop{G) was calculated in [CS4] for any finite 
G ; on the other hand, the torsion subgroup is always a 2-group, 
but rather difficult to compute. The first complete calculation of 
a group RTop(G) with nontrivial torsion is given in [CSSW] for 
the groups G = Z4q with q odd. In this case, the relations all 
arose from the six-dimensional similarities constructed there, and 
the resultant 2-torsion elements all have order 2. Here, we analyse 
the situation for G = Zr and compute the (large) exponent of the 
2-torsion there. 

Write t for the 2-dimensional representation defined by letting 
the generator of the group rotate R2 through 2nk/2r radians. 

Theorem 2. For r > 3, the torsion in RTop(Z2r) has exponent 

2 . This exponent is realized as the order of t - 1 . 
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However, for Z8 the exponent of the group, and the order of 
t - t 5 are both 4. In Theorem 2, the lower bounds for the exponents 
come out of homotopy theory. The (equal) upper bound comes out 
of the main theorem below. 

1. THE MAIN THEOREM 

In describing when representations px and p2 are topologically 
similar, it is convenient to decompose them as p. = 0. + r\i, where 
6t is free (i.e. G acts freely on its unit sphere) and r\i is singu­
lar (the action is nowhere free). Moreover, elementary induction 
arguments reduce the general classification (for G cyclic) to the 
case where y\x—r\2, which will now be considered. 

The main theorem will give necessary and sufficient conditions 
for topological similarity of representations of Z2r. We state each 
of them in a topological version and an equivalent computational 
version, denoted by a prime on the label of the former. The topo­
logical versions are in terms of the equality of certain invariants 
of the lens spaces, Ld , obtained as the orbit space of the free ac­
tion of G on the unit sphere in the representation space V(6t). 
These invariants concern homotopy type, tangential data recorded 
by normal invariants, Reidemeister or Whitehead torsion, and a 
generalization of the Atiyah-Bott-Singer /7-invariant that comes 
out of the G-signature theorem. The translation of these criteria 
into the given computational formulae uses special facts about the 
group ring Z[Z2r] that come from the number theory of the cy-
clotomic rings of integers Z(£2*), s ^ r > where Ç2* is a primitive 
25th root of unity. 

Theorem 3. Let 6{ and 62 be free representations of G = Zr and 
let r\ be arbitrary. Then 6{ + r\ ~t 62 + r\ if and only if conditions 
A-D (or equivalently A' - D') below hold. 

Using equivariant topological engulfing [SWJ it is easily seen 
[SW2] that p{ ~t p2 if and only if the unit spheres S(pt) are 
G - /j-cobordant in the category of locally linear actions. This, 
together with the join structure on a linear sphere and the ability 
to stabilize a topological similarity by direct sum with identity 
maps shows the necessity of the following: 

(A) There is a homotopy equivalence of lens spaces (respecting 
the canonical identifications on nx), ƒ : Le —• Le whose stable 
normal invariant (in the topological category) vanishes (Le. for any 
free representation 6, the map LQ +d —• L d +d induced by ƒ is 
normally cobordant to the identity map of Le e). 
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This condition may be verified via an algorithm extending the 
method used in [CSJ to compute normal invariants in terms of 
the Pontrjagin classes of lens spaces covered by the given ones. 
The algorithm is given as follows. Let 6X = tr' H h tKj and let 
62 = t5' + — h tSj. Since the 6t are free, and since tl =t~l as real 
representations, we may assume that ri = ^ = 1 mod 4 for all i. 
Let oi{xi, . . . , Xjr) be the i th elementary symmetric function of 
xx, . . . , Xj.. Then Condition A is equivalent to the following: 

(A') For 1 < i < j , we have 

n^=n^ mod/, 
and 

<*/ (>•? , . . . , r 7
2 ) - ( T / ( 5 j , ... , s ] ) 

• î (n '»-n'0( / : i ) n o d 2 ^-
The necessity of the following may be shown either by the lo­

cally linear G-surgery theory of Madsen, Rothenberg and the third 
author [MRS] and the computations of equivariant topological 
Whitehead groups of the third author [S], or by a careful analysis of 
the discriminant map using Condition C below. Both approaches 
make use of the algebra of [CS3]. 

(B) The Whitehead torsion, T( ƒ ) , of the above homotopy equiv­
alence of lens spaces transfers to a square in the Whitehead group 
of the index two subgroup of G. 

Computationally, we get 
(B') When we restrict the action to Z2r-i c Z2r, we obtain the 

following 
0 /1^=2^ + 0, 

with (j)x = tr' + • • • + trik and 02 = t5' + • • • + 1 % , and 

IIr2«=rK- mod2r"1. 

This puts severe restrictions on T(ƒ) , as seen via the calcula­
tions of [CS3]. In fact, the permissible torsions are, mod squares, 
precisely the torsion elements which are considered in [CSSW]. In 
particular, the algebra needed for the calculation of condition D 
below is contained in [CSSW and CS3]. 

Using work of [Roth W, Rose W] on Lipschitz analysis on topo­
logical manifolds and equivariant higher signature theorems, or the 
later purely topological generalization of [CSW] on higher signa­
ture theorems we obtain 
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(C) The generalized p-invariants of the unit spheres S(pt) agree. 
Here, the generalized p-invariant is a function from G- {1} to 

the complex numbers defined as follows. First, identify the trivial 
and nontrivial one-dimensional real representations with t and 
2 r~' 

t , respectively, for the purposes of the following formula. Then 
if a = J2 nfi is a representation, and if T generates G, then 

^)x^n(§^)"\ 
Here, the product is taken over all i such that Çl

2r ^ 1. 
This formula is precisely the usual Atiyah-Bott-Singer ^-invari­

ant of La if a is free. Thus, for p. = 6t + r\ as above, Condition 
C says that multiplication by p(S(rj)) kills the difference between 
the usual /^-invariants of Le and Le . Since the restriction of the 
usual (or generalized) /^-invariant to a subgroup is the /^-invariant 
for the restricted action, and since the restrictions of the 6t to Z4 

are linearly equivalent (both are free), we need only consider the 
value of the p-invariant on elements outside Z4 . An inspection 
of the formula above shows that Condition C is equivalent to: 

(C') For 3 < s < r, if p(LQ ) - p(Le ) doesn't vanish on gen-
erators of Z2, c Z2,, then Z2,-i appears as an isotropy group in 

The generalized p-invariant vanishes entirely in the presence 
of sufficiently many isotropy subgroups in Y\ . For whatever choice 
of 0j and 62 , it will vanish if each H with Z4 c H c Zr-\ is 
present. Thus, Condition C is automatically satisfied stably, and 
does not affect the calculation of i?Top . 

In the presence of conditions A-C above, we construct an equi-
variant normal cobordism between S(6{ +r{) and S(62+r}), for a 
suitable r( c Y\ . There is a final surgery obstruction, the vanishing 
of which is necessary by [MRS]: 

(D) If r\ contains no trivial representations, then r( ƒ) is a square 
in the Whitehead group of G. Otherwise, let R2(G) be the subquo­
tient of the complex representation ring R(G) given by 

_ {2(/? + />)} 
* 2 ( G ) - { 4 ( ^ ^ ' 

where p varies over all the complex representations of G, and let 

ô: H°(Z2;Wh(G+)) ^ R2(G) 

be the map on Tate cohomology induced by the multisignature and 
the "inverse" of the discriminant map [W]. Then S(r(f)) is the 
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image in R2 of the multisignature o f an element of LQ(H9 +) , 
where H is the largest proper subgroup of G which occurs as an 
isotropy group in S{r\). 

When r\ contains the trivial representation, the computational 
version is only slightly simpler. We may eliminate reference to 
Lp -groups in favor of a purely representation-theoretic statement 
about the ô{r(f)). 

(D') If t] contains no trivial representations, then 6t = 2(^ + 0, 
with </>. = t"1 + • • •+tr* , </>2 = t*1 +• • -+tSk, and f]r t = Y[st mod 2r. 

If r\ does contain the trivial representation, let H be the largest 
proper subgroup of G which appears as an isotropy subgroup in r\, 
and let i : R2(H) —• R2(G) be induced by the induction map of 
representation rings. Then S(r(f)) = i(x) for x = ^2ntt

l, with 

£ ^ l m o d 4 " / = 0 m o d 4 -
If the H in condition D is the index two subgroup, then the 

condition on ô is equivalent (via condition B and the algebra of 
[CS3] and [CSW]) to the statement that the class represented by 
r(f) in Hl(Z2; Wh(G")) = Lh

x{G, -) [W] vanishes in LP
X(G9 - ) . 

The determination of which torsions vanish there is given explicitly 
in [CSSW]. 

Conditions A and B depend only on the arithmetic of the eigen­
values of the 6i, while conditions C and D depend only on this 
together with the isotropy subgroups which occur in r\. This yields 
the following stability theorem. 
Theorem 4. Let px> p2 and a be arbitrary representations of G = 
Z2r. Suppose that any H with Z4 c H c G which appears as 
an isotropy subgroup in S (a) also appears in the S(pi). Then 
Pi + a ~t p2 if and only if p{ ~t p2. Thus, if each H with 
Z4 c H c G appears as an isotropy group in the S(pi), then 
p{ ~, p2 if and only if p{ = p2 in RTop{G). 

The full range of isotropy groups specified in Theorem 4 is re­
quired to obtain the similarity 2r~2t-\-rj ~t 2r~2t5+rç, r > 3 , which 
is given in Theorem 2. However, often fewer isotropy groups are 
necessary for stability, depending on the generalized /^-invariants 
of the representations and on the equivariant torsion of the G-
homotopy equivalence between their unit spheres. 
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