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The book contains an excellent and extended list of references, but the 
author has not made an effort to help the reader in finding his way through 
the list. Comments consisting of one sentence with a reference to fifteen 
or more papers are not very useful. The sections about applications are too 
modest, both in presentation and in quantity. These are minor criticisms 
on an otherwise excellent book, which thanks to the initiative of the AMS 
is now available to the international mathematical community. 
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The theory of quasiregular mappings (q.r. mappings) is an extension 
to the Euclidean space Rn of the methods of geometric function theory in 
the complex plane C. Very often properties of holomorphic functions in 
C, which do not depend on power series developments, can be studied for 
mappings in R". The main theme of this review is to provide examples 
of these properties and some of its applications. Let us remark that this 
extension is quite different from the theory of holomorphic functions in 
Cn,n>2. Indeed, a holomorphic function in Cn which is also quasiregular 
as a mapping of R2w must be affine if n > 2 [MaR]. 
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Let Q be a domain in R", n > 2, and ƒ : Q, —• R" be a mapping in 
the space W^(0)\ that is, if ƒ = (Z1 , . . . , ƒ"), each ƒ'' has first partial 
derivatives in the distributional sense which are functions in L£C(Q). In 
particular, the formal differential Df(x) and the formal Jacobian J/(x) 
exist for a.e. x G Q. The mapping ƒ is said to be quasiregular if there 
exists K > 1 such that 

(1) \Df(x)\n<KJf(x) 

for a.e. x e £2, where |Z)/(JC)| = sup{|Z)/(jc)A|: A € Rn,\h\ = 1}. The 
smallest K satisfying (1) will be called the dilatation of ƒ and we will 
say that ƒ is K-qs. If, in addition, ƒ is injective then ƒ is called K-
quasiconformal (K-q.c). 

Take a point x e D such that /ƒ(*) > 0 and ƒ is differentiate at x. 
Infinitesimal spheres centered at x will be mapped by ƒ to infinitesimal 
ellipsoids centered at f(x). Condition (1) means precisely that the ratio 
between the longest and shortest semiaxis of these ellipsoids is bounded 
independently of x. 

An analytic function in the plane maps infinitesimal spheres to infinites­
imal spheres, so they are examples of 1-q.r. mappings in R2. In this case 
(1) holds with equality. It is just another way of writing the Cauchy-
Riemann equations. Moreover, every 1-q.r. mapping in the plane is an 
analytic function and l-q.c. mappings are conformai mappings. The stan­
dard references for the two-dimensional theory are the books by Ahlfors 
[Al] and Lehto-Virtanen [LV]. A modern treatment is in Lehto's book [LI] 
and a complete historic account can be found in [L2]. 

In this review we will emphasize the case n > 3. However, we can­
not resist the temptation to mention a few instances in which plane q.c. 
mappings have provided the essential tool to solve problems from other 
branches of analysis. Let us cite Drasin's solution of the inverse problem 
of Nevanlinna theory [D], Bers' theorem on simultaneous uniformization 
[Bl], applications to Kleinian groups and surface topology [A2, B2, EE, 
K], Sullivan's recent solution of the Fatou-Julia problem [S] and the in­
timate connection with the theory of nonlinear elliptic equations in two 
variables [GT, Chapter 12]. Some excellent expository articles on plane 
q.c. mappings are [A3, B3, B4 and B5]. 

While there are plenty of 1-q.r. mappings in the plane, the situation 
changes drastically in R", n > 3. Gehring [Gl] and Resetnjak [Rl] ex­
tended a theorem of Liouville (1850) to prove that restrictions to Q of 
1-q.r. mappings are the only Möbius transformations, that is, finite com­
position of rotations, translations and reflections on spheres and planes 
(see [BI1] for a recent simpler proof). Therefore in higher dimensions it 
is necessary to consider the case K > 1. 

Condition (1) implies that q.r. mappings have some degree of regular­
ity. Resetnjak [R2, R3] showed that a nonconstant q.r. mapping can be 
modified in a set of measure zero so that it becomes continuous, open and 
discrete (f~l(y) is a discrete set). Moreover, ƒ is differentiate a.e., it 
preserves sets of measure zero, m(f~l(E)) — 0 whenever m(E) = 0 and 
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Jf(x) > 0 a.e. Proofs of these properties in the q.c. case are in the fun­
damental papers of Gehring [Gl] and Vàisàlâ [VI] and (including the q.r. 
case) in the series of papers [MRV1, MRV2, MRV3]. 

Let Bf = {x € Q: ƒ is not a local homeomorphism at x} be the branch 
set of ƒ. Zoric proved in [Z] that if ƒ is unbranched (Bf = 0) and 
is defined in all of R", n > 3, then ƒ is injective. Compare this result 
with the exponential ez in the two-dimensional case! In contrast to the 
two-dimensional case, in higher dimensions if a q.r. mapping is smooth 
enough it will be unbranched', for example, when n > 3 and ƒ e C2 [V2]. 
These facts show that R", n > 3, is much more "ng/tff"than R2. Another 
important result showing the difference between n > 3 and n = 2 was 
proved by Gehring in [Gl]. It turns out that if ƒ :_B" —• B" is q.c. and 
surjective, then ƒ extends to a homeomorphism of B", [V3]. How regular 
is g = f/dWl If n = 2 Ahlfors and Beurling [BA] gave a complete 
characterization of these boundary mappings and constructed an example 
showing that g could be completely singular with respect to the Lebesgue 
measure in the circle (|g(5'1)| = 0). By contrast, Gehring showed that g 
is not only absolutely continuous when n > 3, but g: dBn —• dBn is in 
fact q.c. (when properly defined). Gehring's theorem is a key step in the 
original proof of Mostow's rigidity theorem [M]: Ifn > 2 and if M and M' 
are diffeomorphic compact Riemannian n-manifolds with constant negative 
curvature, then M and M' are conformally equivalent. 

We have seen how the higher-dimensional theory in some ways is sub­
stantially different from the case n = 2. Let us now look at some similar­
ities. Many properties of analytic functions in the plane extend to higher 
dimensions. For example, the uniform limit (on compact subsets) of K-
q.r. mappings is K-q.r. [R2]. The q.c. case of this fact was used by 
Lelong-Ferrand to settle a conjecture of Lichnerowicz [LFl]: The group of 
conformai self-mappings of a compact Riemannian n-manifold. n > 2 is 
compact in the topology of uniform convergence. 

Nevanlinna's defect relation is a pillar in the theory of value distribution 
of analytic functions. S. Rickman in [Ril, Ri2] has extended this theory 
to higher dimensions. Let us state his counterpart of Picard's theorem 
in space: For n > 3 and any K > 1 there exists an integer q = q(n,K) 
such that every K-q.r. map ƒ : R" —> Rn\{a\,.. .,aq} is constant whenever 
a\,...,aq are distinct points in Rn. Rickam also constructed examples to 
show that, at least in R3, q —• oo as n —• oo. 

The relationship with elliptic partial differential equations goes over to 
higher dimensions. To prove that a q.r. mapping is open [R3] one depends 
on the nonlinear potential theory associated with equations of the type 

(2) div((<j(x)Vu\Vu)«n/2)-V(T(x)Vu) = 0 

where a(x) is a symmetric positive definite nx n matrix satisfying 

a\h\2<(<j(x)h,h)<0\h\2 

for all h G Rn, where 0 < a < / ? < o o . In a sense made precise in [GLM1] 
equation (2) is "quasi-invariant" under q.r. maps, much as the Laplace 
operator is invariant under analytic functions. This kind of nonlinear 
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potential theory has been developed by Martio and his school [GLM1, 
GLM2, GLM3, GLM4]. Among other things they have used ideas of q.r. 
mappings theory to obtain a necessary and sufficient Wiener-type criterion 
for continuity at the boundary of solutions of (2) [LM]. 

Suppose ƒ : Q, —• R" is K-q.c. By definition the partial derivatives of 
ƒ are in Lfoc(Q). When n = 2 Bojarski [Bo] showed, via singular integral 
theory, that in fact ƒ e W^+e{Si)9

 f o r e v e ry ° < e < eo(K)- I n a seminal 
paper [G2] Gehring extended this higher integrability result to n > 2 using 
only distortion theory and the Hardy-Littlewood maximal function. Let 
Q be a cube in Q with dist(ô, dQ) > S diam(Q). Then there exists e0(K, n) 
and C - C(K, n, S) such that, forO<e< eo(K, n), 

(3) {mlS'dx) <-miJ'dx-
ThusfeW^\Çï). 

A well-known conjecture states that e(K,n) = 1/(K - 1), but this has 
not been proven even for n = 2. 

Inequality (3) is a reverse Holder inequality for Jf. In the language of 
Muckenhoupt's theory of weights, J f is a weight of class ^oo (see [CF]). 
Riemann [Rel] observed that log/ e BMO(ft) and proved (under some 
additional conditions later removed by Astala [As]) that quasi-isometries 
between BMO(fi) and BMO(Q/), £lf being another domain in Rn, are given 
by composition with q.c. mappings. In some ways q.c. mappings gener­
alize bi-Lipschitz mappings like BMO functions generalize L°°-functions. 
An account of the relationship between BMO and Q. C. is in the book 
[RR]. 

The ideas leading to (3) have proven to be very useful in the regularity 
theory of nonlinear elliptic equations and systems. See [GG and G]. 

For many other instances of the interplay between q.c. and q.r. the­
ory and other branches of mathematics, and a much more comprehensive 
review of the state of the #-art, see Gehring's article in the Proceedings 
of the ICM-86, Iwaniec's article in the Proceedings of ICM-83, Vàisâlâ's 
article in the Proceedings of the ICM-78, the book under review and [BM]. 

There are two principal methods for studying q.r. mappings. The ana­
lytic method was initiated by Resetnjak. It is based on quasilinear elliptic 
PDE's and the theory of Sobolev spaces. A modern account of this ap­
proach, largely independent of the work of Resetnjak, is given by Bojarski 
and Iwaniec in [BI]. The geometric method is based on the quasi-invariance 
of moduli of curve families. It was used by Gehring [Gl] and Vàisâlà [VI, 
V3] to develop in a systematic way the properties of q.c. mapping, by 
Martio, Rickman and Vàisàlà [MRV1, MRV2, MRV3] for q.r. mappings. 

The approach taken in the book under review is a variation on the geo­
metric method, in which conformai invariants play a central role. The 
author considers two conformai invariants jUa{x,y) and AQ(x,y) associ­
ated to a pair of points x and y in a domain Q, first introduced by 
J. Ferrand [LF2] and S. Gal [Gaj. Both invariants are given as moduli 
of certain curve families. It turns out that JUQ is a metric in Q, called the 
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modulus metric or conformai metric. By relating JUQ and AQ to more ex­
plicit geometric quantities, the author has proved a number of distortion 
theorems for quasiregular mappings which are sharp when K approaches 
1 or are dimension independent. 

Previous developments of this subject are in the monograph in Russian 
by Resetnjak [R4] and the Lecture Notes by J. Vâisâlâ [V3]. This last book 
contains a systematic development of the method of curve families applied 
to q.c. mappings. 

Matti Vuorinen's book fills a gap in the literature, since it is the first 
monograph in English covering higher-dimensional quasiregular mappings. 
It begins with an excellent introduction and a survey of the aspects of 
the theory not covered in it. This is very useful since the theory of q.r. 
mappings is dispersed in research articles. 

The book is written carefully with all necessary details spelled out and a 
generous use of pictures. It should serve as a good modern account of the 
young and rich subject of q.r. mappings. The bibliography is complete, 
and there is a good collection of open problems at the end. 
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The reader has heard the cliché that algebraic varieties are the locuses 
of solutions of polynomial equations; true as far it goes, but even in simple 
cases, one can know a lot about the equations and almost nothing about 
the solution set. Conversely, and more to the present point, even for a 
variety having an extremely natural and simple description, writing out 
the defining equations might be enormously expensive and unrewarding. 

First of all, I want to give the flavour of toric geometry with two simple 
examples illustrating the main point, before discussing the background 
and the content of Professor Oda's very substantial book. Consider the 
quotient Cn/G of Cn by a diagonalised group action 

(xu...,xn)>-> {ei(g)xu...,en{g)xn), 

where G is a finite Abelian group and et : G —• C* characters of G. This 
quotient can be seen as an explicit affine variety: make a list of G- invariant 
monomials, that is, 

{;cm = n * r \mi > 0 and Y[ei(g)m< = l v # e G} > 

then write out all the multiplicative relations between the generators, and 
finally, take these as the defining equations of a variety. Try it with 

w = 2, G = Z/22 and (x,y) *-> (C*,C9J>) 


