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Stochastic analysis is currently one of the most active areas of appli­
cation of nonstandard analysis. This is attested by the copious literature 
surveyed by Cutland [C] and Anderson [A2]. Most current work treats 
probability theory via the Loeb construction [L], which obtains standard 
probability spaces and stochastic processes from nonstandard ones by a 
rounding off operation. The probability spaces obtained are called Loeb 
spaces. The book under review is a general account of the measure theory 
of Loeb spaces and an introduction to the treatment of stochastic processes 
via Loeb spaces. 

Nonstandard analysis is a modern approach to using infinitesimals in 
analysis, or in mathematics in general, to express limits and notions de­
riving from limits. For example, in the infinitesimal calculus on the reals, 

hm — = 4 
x->2 X - 2 

can be expressed in the intuitive way, as 

x2 - 4 
for all x « 2, — « 4. 

x -2 
The symbol ^ means "infinitely close," i.e. differing by an infinitesimal. 
Nonstandard analysis was originated by Abraham Robinson and modeled 
on Leibnitz's theory of infinitesimals. The advantages of the modern the­
ory over that of Leibnitz are that it has precise, rigorously justified rules 
for manipulating infinitesimals, and that the notion of "infinitely close" 
can be used to represent the concept of limit, not only in connection with 
the reals, but in any topological context, and even in some contexts where 
the notion of limit is not exactly topological. For instance, a Loeb space 
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can be thought of as a generalized limit of probability spaces, and there is 
a similar notion for Banach spaces, the nonstandard hull [HM]. 

To make use of infinitesimals, imagine a universe of mathematical dis­
course (such as some form of set theory) which contains, besides the usual 
objects in mathematics, called "standard," additional "nonstandard" el­
ements, which one may think of as ideal objects. All the theorems of 
ordinary, standard mathematics apply in this enriched universe, provided 
they are interpreted in the sense appropriate to it. This property is called 
the Transfer Principle, or sometimes Leibnitz's Principle, because Leib­
nitz said that infinitesimals and infinite numbers should have the same 
properties as reals of more ordinary size. The theory of the enriched, non­
standard, universe is richer than that of the standard universe, because 
it has the distinction between standard and nonstandard objects. For in­
stance, an infinitesimal real number is a nonstandard real which is smaller 
in absolute value than any nonzero standard real. It is desirable that no­
tions such as being infinitesimal be nonvacuous in all interesting cases. To 
this end the nonstandard universe is constructed so as to satisfy a Satura­
tion Principle, which implies this. The construction is carried out using 
tools from mathematical logic, the theory of mathematical languages and 
theories, in particular from its department for manipulating mathematical 
universes, model theory. 

The aim of most work in nonstandard analysis has been to use it to 
obtain results expressed in the language of standard mathematics. This can 
be done because the nonstandard universe is connected to the standard one 
in two ways. The first is the Transfer Principle already mentioned. The 
second is that a nonstandard object can be rounded off to a standard object 
to which it is infinitely close, in some appropriate sense. This rounding 
off is called forming the standard part. The simplest kind of standard part 
is the one on the reals, which maps a nonstandard real to an infinitely 
close standard real, which is unique, if it exists. The Loeb construction 
is a standard part operation which rounds off a nonstandard probability 
space and any random processes on it to standard ones. The nonstandard 
hull construction is an analogous standard part construction for Banach 
spaces. In either case, the saturation of the nonstandard space ensures that 
the resulting standard probability space or Banach space is very rich. In 
the Loeb space case, this implies, in particular, that any distribution which 
can be approximately realized by a random process on the Loeb space can 
in fact be realized there. A Loeb space is a kind of universal probability 
space. Nonstandard hulls have similar universality properties. 

The Transfer Principle implies that a standard part operation always 
corresponds to some kind of limit, understood in a broad sense. The or­
dinary standard part on the reals corresponds to taking a limit point of 
bounded sequence of reals. Applying the Loeb construction to a nonstan­
dard probability space with a stochastic process corresponds to construct­
ing a standard probability space with a process whose distribution law is 
a weak limit point of a certain tight family of distributions. The claim is 
that the connection between a limit object and its approximation is more 
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transparent if it is represented by a standard part operation. It is also 
technically simpler because it is unnecessary to take subsequences. 

A simple and typical application of the Loeb construction is Anderson's 
[Al] construction of Brownian motion as the standard part of a random 
walk with infinitesimal time steps and space steps of magnitude root of 
the time step. The reader who knows probability theory will recognize 
that Anderson's construction corresponds to Donsker's invariance prin­
ciple, which says that suitable random walks converge in distribution to 
a Brownian motion. Anderson's approach amounts to a construction of 
Brownian motion and a proof of the invariance principle rolled into one. 
This is generally the case with existence proofs for stochastic processes 
using the Loeb construction. 

Note that Anderson's construction finds a continuous standard object 
by forming the standard part of a discrete nonstandard process. This is 
a typical pattern in nonstandard analysis—the nonstandard constructions 
are themselves finitary, and the machinery of the nonstandard model gives 
them the power of infinitary mathematics. Because one can obtain contin­
uous standard objects naturally using finitary nonstandard constructions, it 
is particularly easy to derive existence results using nonstandard analysis. 
This is the practical side of the universality of Loeb spaces. 

The Anderson construction represents half of a common method for 
using nonstandard analysis to solve problems expressed in the language 
of standard mathematics. This is illustrated by the diagram in Figure 1. 
Given a standard problem, one finds a nonstandard problem of which it 
is the standard part. This is called a lifting of the original problem. Then 
one solves the nonstandard problem. Usually it is a finitary problem, and 
the existence of a solution is unproblematical. Then, one shows that this 
nonstandard solution has a standard part, and that the standard part solves 
the standard problem. This method is exemplified in [K] for the case of 
finding weak solutions of stochastic differential equations. 

N o n s t a n d a r d p r o b l e m Nonstandard construction > N o n s t a n d a r d s o l u t i o n 

Lifting = (Standard part) - i Standard part 

Standard problem • Standard solution 

FIGURE 1 

The problem with this method is that it requires two translations, from 
standard to nonstandard and back again. Implicit in this is the notational 
nuisance of having to deal with and distinguish two parallel languages and 
sets of mathematical objects, and the effort required to learn a second 
mathematical language. Now, the advantage of nonstandard analysis is a 
more intuitive approach to the notion of limit. But most mathematicians 
would say that they understand limits rather well already, well enough that 
it is not worth this much trouble to understand them from a slightly better 
perspective. These considerations incline us to believe that nonstandard 
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analysis will remain marginal as a technique for solving problems of stan­
dard mathematics. 

This leaves two alternatives. The first is to forget about nonstandard 
analysis, except for special uses, such as showing that there are probabil­
ity spaces and Banach spaces with certain universality properties, namely 
Loeb spaces and nonstandard hulls. The theory left over would be the 
model theory of structures occurring in analysis. 

The second alternative is to develop mathematics from the nonstandard 
point of view, rather than merely using nonstandard analysis as a technical 
tool in developing standard mathematics. If nonstandard analysis has as 
much mathematical content as standard mathematics, this must be possi­
ble. If the nonstandard approach to such a basic notion as limit really is 
more intuitive, then this must be desirable. 

This program has been carried out for a significant part of probability 
theory in Nelson's recent book [N], Nelson's premise is that the measure-
theoretic notion of a probability space, with a cr-algebra of measurable 
subsets, and probability as a set function on that cr-algebra, is more ab­
stract and set-theoretically sophisticated than is needed to express the basic 
notions of probability theory—random variables, stochastic processes, in­
dependence, conditional expectation. He shows that, in the context of 
nonstandard analysis, discrete probability spaces, where probability is a 
weight function on elements, admit an elegant theory with the same prob­
abilistic content as the classical theory. Now this is in fact the burden of 
most work in nonstandard probability theory, such as that developed by 
Stroyan and Bayod, since most work in nonstandard probability uses only 
discrete nonstandard spaces to develop stochastic analysis. (Nonstandard 
probability is not, however, limited to discrete spaces.) The new idea is 
that it is unnecessary to relate the nonstandard theory to the standard one. 
The mainstream work in nonstandard probability would be simplified and 
improved by this approach, not invalidated. 

Why has not more mathematics already been developed from a purely 
nonstandard point of view? The reason seems to be simply that rigor­
ous standard analysis developed first. Consequently, nonstandard analysis 
has developed as an extension of standard analysis, and has tended to 
use standard concepts as a point of reference and a criterion for whether 
nonstandard results are meaningful. For instance, a nonstandard object 
is considered interesting if it is nearstandard in some relevant sense, i.e. 
if it approximates some standard object, its standard part. But often the 
standard object was invented to be the limit of something—essentially, to 
be the standard part of that nonstandard object. 

Let us consider real numbers as a concrete example. In nonstandard 
analysis one can base a theory with the same content as the infinitesimal 
calculus on the rationals. It is not apparent that the reals would be much 
missed. Would it then be considered important to construct such a set as 
the reals? If one did want to construct the set of reals, it would be defined 
as a set which contained standard parts for all finite rationals. What sort 
of set theory would arise from set constructions such as this? 
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The aim of the purely nonstandard approach is to lighten the burden 
of modern mathematical rigor. The set theoretic foundation has indeed 
made mathematics into a well-defined deductive science, but it has made 
it less accessible to the nonspecialists who should be actually applying it, 
has encumbered mathematicians with details that do not seem to increase 
mathematical content, and is suspected of spawning problems which are 
irrelevant to the problems which mathematics is made to solve. For exam­
ple, applied probabilists commonly regard the measure theoretic founda­
tions of their discipline as something to be avoided and ignored as far as 
possible, which is pretty far. Why not, then, use discrete spaces in the rig­
orous nonstandard setting, and ignore measure theory altogether? Why not 
use finite dimensional linear spaces in a nonstandard setting, and dispense 
with Banach spaces? And so on. 

The book of Stroyan and Bayod is a thorough treatment of the Loeb 
space approach to probability theory. It begins at the beginning, with a 
brief introduction to nonstandard analysis. I found the earlier parts the 
most pleasing. They give a thorough treatment of basic Loeb space mea­
sure theory, including key notions such as lifting and projection (standard 
part), the relation of conditional expectation to these operations, aspects 
of products of Loeb spaces, and distributions on Loeb spaces. The latter 
includes the pleasant result that if two random variables on a hyperfinite 
Loeb space with the counting probability measure have the same distri­
bution, then there is an internal bijection of the space which maps one 
approximately to the other. To appreciate the nonstandard approach, the 
reader should try to prove the equivalent standard result: given a large 
finite probability space with counting probability measure, and two ran­
dom variables on that space having almost the same distribution, there is 
a bijection of the space which maps one random variable approximately 
(in probability) to the other. 

The one undesirable aspect in this part is the development of Loeb 
measure in excessive generality, including infinite measures. These cannot 
be tr-finite, so their theory is rather complicated. This complexity is for 
nought, since they are never used in the book. The authors do provide a 
map to help the reader navigate around the infinite measures, but a clear 
road needing no map would have been better. 

The remainder of the book deals with matters relating specifically to 
stochastic processes, such as filtrations, liftings and projections for pro­
cesses with various sample path properties (continuous, jumps, measur­
able) and for progressively measurable and predictable processes. I found 
this part of the theory less pleasing, because it seems more complicated 
than it ought to be. This is not entirely the fault of the nonstandard anal­
ysis or of the authors, since the standard theory has a rather formidable 
array of topologies, which are not all easy to use. Nevertheless, it seems 
to me that a there must be a more abstract approach which could simplify 
matters, as could a more general treatment of distribution. The book goes 
on to introduce stochastic analysis on Loeb spaces, but much of the ex­
isting nonstandard work in this area is rather technical, and the authors 
often refer to the original papers for details. 
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I would say that this is the best book to read to get a broad feel for Loeb 
spaces. It has all the basic material, and a lot of examples which show just 
what sort of things can be done with Loeb spaces, and which cannot. There 
is helpful advice about which analogies between standard and nonstandard 
concepts are helpful and which are misleading. Those who wish to continue 
study of nonstandard probability theory, or who prefer less general Loeb 
space theory oriented specifically to continuous sample path processes, 
should read Keisler's monograph [K], which is a development of Brownian 
stochastic integration and the associated differential equations in a Loeb 
space setting, or [AFH-KL], which surveys a wide variety of applications of 
nonstandard analysis, with emphasis on probability theory. Of course, we 
warmly recommend the different departure, [N]. A good, current general 
introduction to nonstandard analysis is [HL]. 

REFERENCES 

[AFH-KE] Albeverio, J. E. Fenstad, R. Hoegh-Krohn, and T. Lindstrom, Nonstandard meth­
ods in stochastic analysis and mathematical physics, Academic Press, New York, 
1986. 

[Al] R. M. Anderson, A nonstandard representation for Brownian motion and ltd integra­
tion, Israel J. Math. 25 (1976), 15-46. 

[A21 R. M. Anderson, Review of [HL], Bull. Amer. Math. Soc. (N.S.) 16 ( 1987), 298-306. 
[C] N. J. Cutland, Nonstandard measure theory and its applications, J. London Math. 

Soc. 15(1983), 529-589. 
[HL] A. E. Hurd and P. A. Loeb, An Introduction to nonstandard real analysis, Academic 

Press, New York, 1985. 
|HMJ C. W. Henson and L. C. Moore, Nonstandard analysis and the theory of Banach 

spaces, (A. E. Hurd, éd.), Nonstandard Analysis: Recent Developments, Lecture 
Notes in Math., vol. 983, Springer-Verlag, Berlin and New York, 1983. 

[Kl H. J. Keisler, An infinitesimal approach to stochastic analysis, Mem. Amer. Math. 
Soc. 48, (1984), no. 297.. 

[L] P. A. Loeb, Conversion from standard to standard measure spaces and applications 
to probability theory, Trans. Amer. Math. Soc. 211 (1975), 113-122. 

[Nl E. Nelson, Radically elementary probability theory, Ann. of Math. Studies no. 117, 
Princeton Univ. Press, Princeton, N. J., 1987. 

D. N. HOOVER 

ODYSSEY RESEARCH ASSOCIATES, 
ITHACA, NEW YORK 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 21, Number 2, October 1989 
©1989 American Mathematical Society 
0273-0979/89 $1.00 + $.25 per page 

General theory of Markov processes, by Michael Sharpe. Academic Press, 
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Probability theory is concerned with random variables and their distri­
butions, and a family of random variables (Xt) indexed by a parameter is 
called a stochastic process. Among stochastic processes, one can roughly 
distinguish two main categories, whose study uses widely different meth­
ods: true stochastic processes are those for which there is indeed some 


