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Why the need for generalized solutions of partial differential equations? 
It has been recognized that many equations of physics do not have clas­
sical solutions (for instance shock wave solutions of systems of conser­
vation laws). Distribution solutions—usually called "weak solutions"—of 
the model equation 

ut + uux = 0 
are defined as those integrable functions u which satisfy: V^ € W°°(R2) 
with compact support 

(1) J J ^u(xft)^(xft) + ^u2(xj)^zi//(xtt) 2 v ' Jdx 
dxdt = 0. 

In the case of linear equations a detailed theory has been developed [15, 
7]. However the situation is far from being satisfactory. Lewy [8] showed 
that the very simple linear equation 

(2) wi
u+iw2

u-2i{Xl+iX2)ir3
u=f 
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fails to have even local solutions for a large class of C°° second members 
f(x\, X2, X3). Concerning nonlinear equations the situation is by far worse, 
but several weak solution methods have been developed as surveyed in [9]. 

The contention of the author of the book under review is that this situation 
stems from the lack of a suitable mathematical setting which could offer a 
convenient nonlinear concept of generalized solutions. This setting cannot 
be the one of distributions (or ultra distributions, hyperfunctions, ... ) as 
is quite clear from an analysis of classical facts (Part I of the book under 
review and below). Now let us give an example from physics. Consider 
the following system of one dimensional elasticity [4]: 

Pt + (pu)x = 0, 
(pu)t + (pu2 + p-S)x = 0, 

(3) \ (pe)t + [peu + (p-S)u]x = 0, 
St + uSx - k2ux = 0, 

P = ®(P,I), 
where p = density, u = velocity, p = pressure, S = component Sn of the 
stress deviation tensor, e = total specific energy, I — e - u2/2 = internal 
specific energy, O is a function of two real variables and k2 is a constant. 
In the case of a shock wave these variables are simultaneously discontinu­
ous and so the term uSx appears in the form of an ambiguous product of 
a discontinuous function by the derivative of another function discontin­
uous at the same point: in short, a product of the kind Y • ô, where Y = 
Heaviside function (Y(x) = 0 if x < 0, Y(x) = 1 if x > 0) and where S 
is the Dirac mass at the origin (S(x) = 0 if x ^ 0, 3(0) so large such that 
ƒ S(X)dX = 1; one has intuitively Y' = a). The fourth equation in system 
(3) follows from Hooke's law stated as an infinitesimal linear stress—strain 
relationship in a frame of reference following the medium. For large defor­
mations and strong collisions the usual linear form of Hooke's law [5] is no 
longer valid, and it is not known how to "escape" from the above problem 
of multiplication of distributions. Empirical numerical codes have been 
built for a few years by now for the numerical simulation of collisions: one 
observes shock wave solutions which reproduce the expected physical re­
sults. The same occurs in various other physical situations (shock waves in 
elastoplasticity, acoustics in a medium with piecewise C°° characteristics). 
Note that in the book under review the author does not consider explicitly 
(3), which can however be found in references, but the simplified model 

( ut + uux = <7Xt 

\ <jt + uox = k2ux, 
on which deeper mathematical results (solution of the Cauchy problem) 
can be obtained, but which is not exactly a system of physics. As long 
as one considers that mathematics, physics and numerical tests have to fit 
together (especially in the setting of partial differential equations) this can 
be considered as a priori evidence for the need of an appropriate setting to 
define generalized solutions. 

In order to state the problem, the author begins with a review on some 
essentials in weak solutions and distributions. Among the difficulties which 
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make the distribution setting inadequate, the most famous one is probably 
"Schwartz's impossibility result" (1954) [14]: 

"Suppose given an associative algebra A with a derivative D : A -• A 
(i.e., a linear map satisfying the rule D( fg) = (Df ) -g+f- {Dg))t Suppose 
further that the space S?(R) of continouous functions on R is included in 
A9 that the derivative D induces on ^ ( R ) the usual derivative, that the 
function 1 is the unit element of A and finally that ^(R) is a subalgebra 
of A. Then there is no element S e A, ô ^ 0, such that xS - 0." 

If ô is the Dirac delta distribution (defined by the formula ƒ S(x) y/(x) dx 
= ^(0) for any text function if/) then one has xS — 0 in distribution theory 
(indeed xS is defined in this theory by ƒ xô(x)y/(x)dx = (xy/)(0) = 0). 
Therefore the algebra A cannot contain the distribution S and incorporate 
the above natural definition of the product xS. (Indeed and somewhat 
intuitively, the product xS can be considered as null, but products such as 
xS2, xô3,... appear—when one approximates ô in a reasonable way—as 
being "infinite" while they should still be null in the algebra A as long as 
xS = 0.) The commonly accepted interpretation since 1954 is that "mul­
tiplication of distributions is impossible". Somewhat to anticipate—but 
also to clarify the ideas—the interpretation within the theory presented 
in Part II of the book under review, is that XÔ is "infinitesimal" but not 
exactly null, permitting xô2,... to be large, and the "impossibility" dis­
appears. The philosophy of the "impossibility of the multiplication of 
distributions" has had far reaching consequences. Considerable effort has 
been invested in modifying the classical heuristic formulation of Quantum 
Field Theory, so as to avoid these products, but, even in this field, physi­
cists go on introducing products of distributions. Also that philosophy 
certainly delayed the emergence of nonlinear theories capable of dealing 
with multiplications of distributions. 

After a useful introduction (Part I) which—as far as the reviewer knows 
—has not been available in such a detailed and comprehensive form, the 
author undertakes the presentation of two nonlinear theories (Parts II and 
III respectively) introduced earlier in [2, 3] and [12,13]. Form the author's 
introduction "The aim of this volume is to offer the reader a sufficiently 
detailed—yet easy—introduction to two of these recent nonlinear theories 
[...]. This introduction aims to bring the reader to the very level of ongo­
ing research and equip him/her to pursue it if he/she wishes so. This may 
sound somewhat unlikely to those who are familiar with the rather lengthy 
and subtle technical intricacies of the linear theory of distributions [15, 
7}. However, as may well happen in the case of emergent theories, their 
strength can rather lie in the new ideas than in techniques, and of course, 
also in results these new ideas can bring about". 

In the first of these two nonlinear theories the key to avoiding the 
"Schwartz impossibility result" lies in the consideration of two concepts 
of equality: a strong one (denoted by =) and coherent with all opera­
tions, including multiplication, and a weak one (called "association" and 
denoted by &) in general incoherent with the multiplication. Two "gener­
alized functions" can be associated with each other, yet be different, but 
two associated distributions are equal. One has xS « 0 and xS ^ 0, and 
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in this way the Schwartz impossibility result is circumvented. This is in 
complete agreement with classical analysis, when one has understood the 
essence of the matter: the new objects are more refined than the classi­
cal concept of a function and a distribution: the difference between xô 
and 0 is "infinitesimal" (in the sense xô « 0) but not exactly null (since 
xô ^ 0). In classical analysis an infinitesimal quantity is null, so that 
this more refined difference does not make sense. Any theory dealing with 
products of singular objects (whose singularities lie in the same point) has 
to deal with "infinitesimal" and "infinitely large" quantities. In this sense 
the theory reminds one of a kind of Nonstandard Analysis. In the the­
ory in Part II one has a canonical embedding of the distributions into the 
"generalized functions". This gives a canonical product of distributions. It 
is shown (book under review, Oberguggenberger [10,11]) that one obtains 
in this way a synthesis of most earlier known multiplications of distribu­
tions: Hörmander, Ambrose, Antosik-Mikusinski-Sikorski, Hirata-Ogata, 
Kaminski. A nice characterization in terms of Lojasiewicz sections is given 
in [6]. In the theory in Part II one "succeeds in proving quite impressive 
existence, uniqueness, regularity results concerning generalized solutions 
of linear and nonlinear partial differential equations". Concerning gener­
alized solutions of partial differential equations, the genuine difficulty is 
often shifted to the final task of ascertaining that the generalized solution is 
indeed a classical function. This has been achieved within this theory, for 
systems of equations of physics and engineering such as (3) and (4) which 
do not have discontinuous solutions in the sense of distribution theory. 

Part III introduces the earlier, more general, theory of the author [12, 
13]. Here one has only one kind of equality, but one cannot have a single 
differential algebra containing the distributions: one has to deal with a 
chain of such algebras, with partial differential operators mapping an alge­
bra into another one. This reminds one of the classical chain of algebras 
^m(Q) of functions of class Cm,m= 1,2,3, This setting looks conve­
nient, since a PDE usually involves only a finite number of partial deriva­
tives. In his presentation the author has sought for greater generality: this 
theory "has so far concentrated on the most general algebraic and differ­
ential aspects of possible nonlinear theories of generalized functions, with 
the primary view of their use in the solution of rather arbitrary nonlinear 
partial differential equations, where in addition to the usual problems of 
existence, uniqueness and regularity of generalized solutions, the problems 
of stability, generality and exactness of such solutions have been empha­
sized". An interpretation of the classical Cauchy-Kovalevskaia theorem 
within this theory yields existence of generalized solutions which—with 
the possible exception of closed, nowhere dense subsets which may even 
have zero Lebesgue measure—are analytic on the whole of the domain 
of definition of the respective analytic equations. It is probably too early 
for a deep understanding of this kind of result, as well as many other 
ones presented in the book, such as existence results for linear PDEs with 
C°° coefficients, unsolvable within distribution theory (the Lewy equation 
for instance). Undoubtedly, these applications should be studied more in 
detail, especially in the light of particular cases of systems of equations 
stemming from physics and in the light of numerical experimentation. 
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Note that such a more detailed study has recently been done for discon­
tinuous solutions of systems of equations in nonconservation form, and 
has been extremely fruitful. See below. 

This book is not a classical textbook; it is resolutely a research book, 
in which the author expresses his own conclusion and his own conviction 
on a field which is emerging and is in rapid evolution. The problem itself 
is quite controversial. In the last 20 years, I have often heard prominent 
theoretical physicists telling that the mathematical difficulties connected 
with "multiplications of distributions in physics" were certainly one of 
"our epoch's main problems" in mathematics. On the other hand I have 
also often heard prominent mathematicians asserting that the problem had 
been completely settled in the negative by Schwartz's impossibility result. 
For those who believe in a somewhat "religious sense" that mathemat­
ics and physics are not dissociated, and that dissociations are only the 
superficial appearance of provisionally incoherent research developments, 
a satisfactory reconciliation is expected. The book under review offers a 
significant contribution towards such a reconciliation, since it shows basic 
and general ways in which singular operations such as arbitrary products 
of distributions can be incorporated into mathematics, and then effectively 
applied to the solution of nonlinear PDEs. 

A criticism is that the book does not present the new numerical results 
that emerge from experiments and can be dealt with by this mathemati­
cal theory, although some references to engineering applications are given. 
Since the time this book was written (1985), a vast number of such ap­
plications of products of distributions to continuum mechanics have been 
obtained, for instance in elasticity, elastoplasticity and acoustics. These 
applications are presented in the more recent book [1] as well as in a series 
of preprints by the reviewer and collaborators. 

As a matter of faith, or coming from their own experience, some math­
ematicians believe that all "correctly posed" problems of physics are in 
conservation form, and so, they never show products of distributions even 
in the case of shock waves. Therefore they do not accept motivations 
like those for instance connected with the system (3). However, even for 
such mathematicians, the mathematics in the book under review brings 
substantial numerical applications which take the form of new numerical 
schemes, useful for the classical system of fluid dynamics as well; see [1]. 

I recommend the reading of the book under review to those pure math­
ematicians who like to think calmly but deeply about the mathematical 
foundation of the problem. I believe that the presentation and style are 
excellent. However, the set of references is incomplete, especially for the 
theory in Part II, although it covers the material used by the author, and 
so is sufficient in this sense. An up to date and more complete set of 
references can be found in [1]. 
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A -̂theory for C*-algebras is also known under the name of "noncommu­
tative" topology. A C*-algebra is a Banach algebra that has the same ab­
stract properties as the algebra &(X) of continuous complex-valued func­
tions on a compact space X except for the fact that the multiplication is 
not necessarily commutative. 

Noncommutative C* -algebras arise naturally from group actions on 
topological spaces, foliated manifolds, pseudodifferential operators, etc., 
and they also formalize the noncommuting variables of quantum mechan­
ics. 

Even if one is only interested in spaces, one often has to extend the 
frame to the noncommutative category as certain natural constructions in 
^-theory automatically lead to noncommutative algebras. One might go 
as far as to compare this to the passage from real to complex numbers in 
analysis. 


