COMPACT MANIFOLDS WITH A LITTLE NEGATIVE CURVATURE

K. D. ELWORTHY AND S. ROSENBERG

- 1. Bochner's Theorem states that a compact oriented Riemannian manifold (M, g) with positive Ricci curvature has $H^1(M; \mathbf{R}) = 0$. Myers' Theorem implies the stronger result that $\pi_1(M)$ is finite under the same hypothesis. Both theorems fail if the Ricci curvature is positive except on a set of arbitrarily small diameter, since every compact manifold admits such a metric of volume one. Nevertheless, we can extend these theorems and the Bochner Theorem for p-forms, yielding topological obstructions to manifolds admitting metrics with a little negative curvature.
- **2. Results for** $H^1(M; \mathbf{R})$ **.** The Laplacian on p-forms has the Weitzenböck decomposition $\Delta^p = \nabla^* \nabla + R^p$; here ∇ is the Levi-Civita connection and $R^p \in \operatorname{End}(\Lambda^p T^* M)$ with $R^1 = \operatorname{Ricci}$. We write $R^p(x) \ge R_0$ for $x \in M$ if the lowest eigenvalue of $R^p(x)$ is at least R_0 . In what follows, we normalize all metrics to have volume one.

THEOREM 1. Pick $R_0 > 0$ and K < 0. There exists $\varepsilon = \varepsilon(R_0, K, \dim M) > 0$ such that if $\text{Ric}(x) \ge R_0$ except on a set A, with diameter $\text{diam}(A) \le \varepsilon$, where $\text{Ric}(x) \ge K$, then $H^1(M; \mathbf{R}) = 0$.

In other words, if the metric has a deep well of negative Ricci curvature, we may still conclude $H^1(M; \mathbf{R}) = 0$ provided the well is narrow enough. Notice that there is no restriction on the topology of A.

Theorem 1 is a consequence of the following weaker version about metrics with a shallow well of negative Ricci curvature.

THEOREM 1'. Pick $R_0 > 0$. There exists $\varepsilon' = \varepsilon'(R_0, \dim M) > 0$ and $\delta = \delta(R_0, \dim M) < 0$ such that if $\mathrm{Ric}(x) \geq R_0$ except on a set A, with $\mathrm{diam}(A) \leq \varepsilon'$, where $\mathrm{Ric}(x) \geq \delta$, then $H^1(M; \mathbf{R}) = 0$.

We sketch a proof of Theorem 1'. By semigroup domination for the heat flow on one forms, it is enough to show that $\Delta^0 + \text{Ric}' > 0$, where Ric'(x) is the lowest eigenvalue of Ricci at x. By an elementary argument, we have

LEMMA 2. Let
$$V: M \to \mathbf{R}$$
 be continuous. If (i) $\int_M V \, d\mathrm{vol}(g) > 0$ and (ii) $\lambda_1 \geq -V_{\min} + \frac{\|V - V_{av}\|^2}{\int_M V}$, then $\Delta^0 + V > 0$.

Received by the editors February 15, 1988 and, in revised form, July 7, 1988. 1980 Mathematics Subject Classification (1985 Revision). Primary 53C20; Secondary 58G11, 58G32, 58C40.

The first author was partially supported by the SERC and the second author by the NSF.

Here λ_1 is the first nonzero eigenvalue of Δ^0 , V_{\min} is the minimum of V, $V_{av} = \operatorname{vol}(M)^{-1} \int V$ and $\|\cdot\|$ is the L^2 -norm. We set $V = \min\{R_0, \operatorname{Ric}'\}$. Then for ε' and δ sufficiently small, (i) holds and the right side of (ii) is arbitrarily close to zero. However, by Myers' Theorem, the diameter of M-A and hence of M is bounded above. By Gromov [5] or Li and Yau [8], this keeps λ_1 bounded away from zero as ε' , δ go to zero. Thus $\Delta^0 + V > 0$ and hence $\Delta^0 + \operatorname{Ric}' > 0$.

To derive Theorem 1, we strengthen Lemma 2. If $\Delta^0 f = \lambda_1 f$, then we apparently need $\lambda_1 \geq -V_{\min}$ to show $\langle (\Delta^0 + V)f, f \rangle > 0$. However, we can do much better provided f is not concentrated near V_{\min} . In fact, by estimates of Li [7] and Croke [2] we can estimate how concentrated any function in the span of the first m eigenfunctions of Δ^0 may be near V_{\min} . Roughly speaking, this allows $V_{\min} = \mathrm{Ric}'_{\min}$ to be arbitrarily negative and to replace λ_1 by λ_m in Lemma 2(ii). Now we can mimic the proof of Theorem 1' using the estimates in Li and Yau [9] for λ_m . The method of proof yields explicit upper bounds for $\varepsilon, \varepsilon'$, and $|\delta|$ in terms of the geometric data.

A different method of coupling geometric information with semigroup domination may be found in [1].

3. Results for $\pi_1(M)$. Here the results for deep and shallow wells differ.

THEOREM 3. Assume M admits a metric g with $\mathrm{Ric}(x) \geq R_0 > 0$ except on a set A, with $\mathrm{diam}(A) \leq \varepsilon$, where $\mathrm{Ric}(x) \geq K$, for ε as in Theorem 1. If $\pi_1(M)$ contains a solvable subgroup of finite index, then $\pi_1(M)$ is finite. In particular, if $\pi_1(M)$ has polynomial growth, then $\pi_1(M)$ is finite [4].

As opposed to Myers' theorem, the proof uses $H^1=0$ to show π_1 is finite. In the tower of coverings $\tilde{M}\to M_k\to M_{k-1}\to\cdots\to M_0\to M$ associated to the solvable subgroup, we argue inductively that $H^1(M_j;\mathbf{R})=0$ implies M_{j+1} is a finite cover of M_j , noting that $\Delta^0+\mathrm{Ric}'$ is still positive for finite covers of M.

If a manifold with infinite π_1 admits a shallow well metric, the metric must be very distorted, in the sense that either the injectivity radius is very small at each point, or a generator of π_1 has very long geodesic length. To be more precise, we fix a point x_0 of M.

THEOREM 3'. Suppose $\pi_1(M, x_0)$ is infinite. For a set of generators $G = \{\gamma_1, \ldots, \gamma_t\}$ for $\pi_1(M, x_0)$ and for positive numbers l, ρ and R_0 , there exist $\delta = \delta(R_0, \dim M, G, l, \rho, \pi_1(M, x_0)) < 0$ and $\varepsilon = \varepsilon(R_0, \dim M) > 0$ such that if g is a metric satisfying

- (i) some point of M has injectivity radius larger than ρ ,
- (ii) the shortest geodesic in γ_i has length less than l for each i,
- (iii) $Ric(g) \ge R_0$ except on a set of diameter less than ε , then $Ric(g) < \delta$ somewhere on M.

Here we bound the growth function $\gamma(r)$ of π_1 by $C_1 \cdot \exp(C_2 \sqrt{-\delta}r)$ for positive constants C_1 , C_2 as in [4, 11]. For fixed $C_3 > 0$ and $N \in \mathbb{Z}^+$, this is bounded in turn by $C_3 \cdot r$ for $r = 1, 2, \ldots, N$ by taking δ close to zero.

For N sufficiently large, this implies $\pi_1(M)$ contains a nilpotent subgroup of finite index [4] and Theorem 3 applies.

4. Results for p-forms. $H^p(M, \mathbf{R}) = 0$ if R^p is positive. More generally, if we define $R^{p'}$ analogously to Ric', then $H^p(M, \mathbf{R}) = 0$ whenever $\nu^p = \overline{\lim}_{t \to \infty} t^{-1} \ln \mathbf{E}[\exp(-\int_0^t R^{p'}(x_s) ds)] < 0$. Here \mathbf{E} is expectation with respect to the Wiener measure for Brownian motion x_s on M. For the universal cover \tilde{M} , $\nu^p(M) = \nu^p(\tilde{M})$ with the pullback metric, so $\nu^p < 0$ implies the vanishing of the space of L^2 harmonic p-forms on \tilde{M} . By the weak Hodge Theorem, $\mathrm{Im}[H_c^p(\tilde{M};\mathbf{R}) \to H^p(\tilde{M};\mathbf{R})] = 0$, where H_c^p denotes cohomology with compact supports. This implies that no nonzero class in $H^p(\tilde{M};\mathbf{R})$ has a representative differential form with compact support. For p = 1, we showed in [3] that in fact $H_c^1(\tilde{M};\mathbf{Z}) = 0$, so in particular a compact 3-manifold with infinite π_1 and admitting a metric as in Theorem 3 must be a $K(\pi, 1)$.

For higher dimensional manifolds, we fix generators of $\pi_1(M)$ with associated growth function $\gamma(r)$ and a function f(r) with $\limsup_{r\to\infty} f(r)\gamma(kr)$ = 0 for all $k\in \mathbb{Z}^+$ · f(r) is then independent of the choice of generators.

THEOREM 4. Assume $R^p > 0$ or more generally that $\nu^p < 0$ on M. Let r denote the distance from a fixed point in \tilde{M} . If $\pi_1(M)$ is infinite, no nonzero class in $H^p(\tilde{M}; \mathbf{R})$ has a representative form which decays faster than f(r).

By Micallef-Moore [10], a simply connected manifold with curvature operator positive on complex totally isotropic two-planes is homeomorphic to a sphere (dim $M \ge 4$). It is known that this curvature condition implies $R^2 > 0$ if dim M is even, and it may be that it implies $R^p > 0$ for $p \ne 1$, n-1. Thus Theorem 4 gives topological information on nonsimply connected manifolds with this type of curvature operator, at least for p=2 and dim M even.

To prove Theorem 4, we use a notion of bounded homology H_p^∞ and l_1 -cohomology H_1^p complementary to Gromov's bounded cohomology [6]. As in [3, Theorem 5A], the integral of a compactly supported closed p-form over a bounded chain is unchanged under the heat flow and decays to zero as $t \to \infty$, so $\text{Im}[H_c^p \to H_1^p] = 0$. Using a Poincaré duality map in this theory and the fact that $\nu^p = \nu^{n-p}$, we conclude that every class $\alpha \in H_p(\tilde{M})$ is the boundary of an infinite chain $\sigma = \sum n_i \sigma_i$ with bounded coefficients. Let θ be a closed differential form which decays faster than f(r). By estimates in [11], the boundary of suitable partial sums of σ has volume growth bounded by $\gamma(kr)$ for some k, so the integral of θ over the boundary of these partial sums tends to zero at infinity. Thus $\int_{\alpha} \theta = 0$ so θ is cohomologous to zero.

REFERENCES

- 1. P. Bérard and G. Besson, Number of bound states and estimates for some geometric invariants, Preprint.
- 2. C. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. École Norm. Sup. Paris 13 (1980), 419-435.

- 3. K. D. Elworthy and S. Rosenberg, Generalized Bochner Theorems and the spectrum of complete manifolds, Acta Math. Appl. (to appear).
- 4. M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53-78.
- 5. _____, Paul Levy's isoperimetric constant, Inst. Hautes Études Sci. Publ. Math., preprint, 980.
- 6. _____, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. **56** (1982), 5-100.
- 7. P. Li, On the Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Sci. École Norm. Sup. Paris 13 (1980), 451-469.
- 8. P. Li and S. T. Yau, Estimates of eigenvalues on a compact Riemannian manifold, Proc. Sympos. Pure Math., vol. 36, Amer. Math. Soc., Providence, R.I., 1980, pp. 205-240.
- 9. ____, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201.
- 10. M. Micallef and J. D. Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), 199–227.
- 11. J. Milnor, A note on curvature and fundamental group, J. Differential Geom. 2 (1968), 1–7.

MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK, COVENTRY CV4 7AL, UNITED KINGDOM

DEPARTMENT OF MATHEMATICS, BOSTON UNIVERSITY, BOSTON, MASSACHUSETTS 02215