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COMPACT MANIFOLDS 
WITH A LITTLE NEGATIVE CURVATURE 

K. D. ELWORTHY AND S. ROSENBERG 

1. Bochner's Theorem states that a compact oriented Riemannian man­
ifold (M, g) with positive Ricci curvature has Hl(M;R) - 0. Myers' The­
orem implies the stronger result that U\{M) is finite under the same hy­
pothesis. Both theorems fail if the Ricci curvature is positive except on 
a set of arbitrarily small diameter, since every compact manifold admits 
such a metric of volume one. Nevertheless, we can extend these theorems 
and the Bochner Theorem for /?-forms, yielding topological obstructions 
to manifolds admitting metrics with a little negative curvature. 

2. Results for HX{M\R). The Laplacian on/7-forms has the Weitzenböck 
decomposition Ap = V*V + Rp; here V is the Levi-Civita connection and 
RP e End(APT*M) with Rl = Ricci. We write Rp(x) > R0 for x e M if 
the lowest eigenvalue of Rp(x) is at least RQ. In what follows, we normalize 
all metrics to have volume one. 

THEOREM 1. Pick Ro > 0 and K < 0. There exists e = e(R0, K, dim Af ) 
> 0 such that if Ric(x) > Ro except on a set A, with diameter diam(^4) < e, 
where Ric(x) > K, then Hl(M;R) = 0. 

In other words, if the metric has a deep well of negative Ricci curvature, 
we may still conclude Hl(M;R) = 0 provided the well is narrow enough. 
Notice that there is no restriction on the topology of A. 

Theorem 1 is a consequence of the following weaker version about met­
rics with a shallow well of negative Ricci curvature. 

THEOREM 1'. Pick R0 > 0. There exists e' = ef(Ro,dimM) > 0 and 
ô = S(Ro,dimM) < 0 such that if Ric(x) > Ro except on a set A, with 
diam(^) < e', where Ric(x) > Ô, then Hl(M;R) = 0. 

We sketch a proof of Theorem 1'. By semigroup domination for the 
heat flow on one forms, it is enough to show that A0 + Ric' > 0, where 
Ric'(x) is the lowest eigenvalue of Ricci at x. By an elementary argument, 
we have 

LEMMA 2. Let V: M —> R be continuous. If(i) fM V dvol(g) > 0 and 

( i i ) A 1 > - ^ i n + ^ ^ , 

thenA° + V>0. 
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Here k\ is the first nonzero eigenvalue of A0, Vm{n is the minimum of V, 
Vav = vol(M)"1 ƒ V and || • || is the L2-norm. We set V = min{i*0, Ric'}. 
Then for e' and S sufficiently small, (i) holds and the right side of (ii) 
is arbitrarily close to zero. However, by Myers' Theorem, the diameter 
of M - A and hence of M is bounded above. By Gromov [5] or Li and 
Yau [8], this keeps X\ bounded away from zero as ef ,S go to zero. Thus 
A0 + V > 0 and hence A0 + Ric' > 0. 

To derive Theorem 1, we strengthen Lemma 2. If A0 / = k\f, then we 
apparently need X\ > -Vmin to show ((A0 + V)f,f) > 0. However, we 
can do much better provided ƒ is not concentrated near Kmin. In fact, by 
estimates of Li [7] and Croke [2] we can estimate how concentrated any 
function in the span of the first m eigenfunctions of A0 may be near Fmin. 
Roughly speaking, this allows Fmin = Ric^m to be arbitrarily negative and 
to replace X\ by km in Lemma 2(ii). Now we can mimic the proof of 
Theorem V using the estimates in Li and Yau [9] for km. The method 
of proof yields explicit upper bounds for e,e', and \S\ in terms of the 
geometric data. 

A different method of coupling geometric information with semigroup 
domination may be found in [1]. 

3. Results for n\ (M). Here the results for deep and shallow wells differ. 

THEOREM 3. Assume M admits a metric g with Ric(x) > Ro > 0 except 
on a set A, with diam(^4) < e, where Ric(x) >K,for e as in Theorem 1. If 
7t\(M) contains a solvable subgroup of finite index, then n\{M) is finite. In 
particular, ifn\(M) has polynomial growth, then n\(M) is finite [4]. 

As opposed to Myers' theorem, the proof uses Hl = 0 to show %\ is 
finite. In the tower of coverings M —• M^ —• Af^-i —• • • • —• Mo -*• M 
associated to the solvable subgroup, we argue inductively that Hl (My, R) = 
0 implies Mj+\ is a finite cover of Mj, noting that A0 + Ric' is still positive 
for finite covers of M. 

If a manifold with infinite n\ admits a shallow well metric, the metric 
must be very distorted, in the sense that either the injectivity radius is very 
small at each point, or a generator of n\ has very long geodesic length. To 
be more precise, we fix a point xo of M. 

THEOREM 3'. Suppose n\(M,xo) is infinite. For a set of generators G = 
{y\f->yt} for 7t\ {M, Xo) and for positive numbers I, p and Ro, there exist 
ô = S(Ro,dimM, G, I, p, 7i\(M,xo)) < 0 and e - e(iÊo>dimM) > 0 such 
that if g is a metric satisfying 

(i) some point of M has injectivity radius larger than p, 
(ii) the shortest geodesic in y, has length less than I for each i, 
(iii) Ric(g) > Ro except on a set of diameter less than e, 

then Ric(g) < ô somewhere on M. 

Here we bound the growth function y(r) of n\ by C\ • exp(C2\/-ôr) for 
positive constants C\, Ci as in [4, 11]. For fixed C3 > 0 and N e Z+, this 
is bounded in turn by C3 • r for r = 1,2,..., N by taking S close to zero. 
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For N sufficiently large, this implies 7t\(M) contains a nilpotent subgroup 
of finite index [4] and Theorem 3 applies. 

4. Results for p-forms. HP(M,R) = 0 if Rp is positive. More gener­
ally, if we define Rp' analogously to Ric', then HP(M,R) = 0 whenever 
vp = lim^oo/ -1 lnE[exp(- J0' R

p'(xs) ds)] < 0. Here E is expectation with 
respect to the Wiener measure for Brownian motion xs on M. For the 
universal cover M, vp(M) = up(M) with the pullback metric, so vp < 0 
implies the vanishing of the space of L2 harmonic /7-forms on M. By 
the weak Hodge Theorem, Im[^(M;R) -> HP(M;R)] = 0, where H? 
denotes cohomology with compact supports. This implies that no nonzero 
class in HP(M; R) has a representative differential form with compact sup­
port. For p = 1, we showed in [3] that in fact H^(M;Z) = 0, so in par­
ticular a compact 3-manifold with infinite %\ and admitting a metric as in 
Theorem 3 must be a K(n, 1). 

For higher dimensional manifolds, we fix generators of it\ (M) with asso­
ciated growth function y(r) and a function ƒ (r) with lim sup,..^ f{r)y{kr) 
= 0 for all k e Z+ • ƒ (r) is then independent of the choice of generators. 

THEOREM 4. Assume Rp > 0 or more generally that vp < 0 on M. Let 
r denote the distance from a fixed point in M. If %\{M) is infinite, no 
nonzero class in HP(M\R) has a representative form which decays faster 
than ƒ (r). 

By Micallef-Moore [10], a simply connected manifold with curvature 
operator positive on complex totally isotropic two-planes is homeomorphic 
to a sphere (dim M > 4). It is known that this curvature condition implies 
R2 > 0 if dim M is even, and it may be that it implies Rp > 0 for p ^ 
1, n - 1. Thus Theorem 4 gives topological information on nonsimply 
connected manifolds with this type of curvature operator, at least for p = 2 
and dim M even. 

To prove Theorem 4, we use a notion of bounded homology H™ and 
11 -cohomology H{ complementary to Gromov's bounded cohomology [6]. 
As in [3, Theorem 5A], the integral of a compactly supported closed /?-
form over a bounded chain is unchanged under the heat flow and decays 
to zero as t --• oo, so Im[//«f -• H[\ - 0. Using a Poincaré duality map 
in this theory and the fact that vp - vn~~p, we conclude that every class 
a € HP(M) is the boundary of an infinite chain a = ^ w/07 with bounded 
coefficients. Let d be a closed differential form which decays faster than 
ƒ (r). By estimates in [11], the boundary of suitable partial sums of a has 
volume growth bounded by y(kr) for some k, so the integral of 6 over the 
boundary of these partial sums tends to zero at infinity. Thus fa 6 = 0 so 
6 is cohomologous to zero. 
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