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ON SINGULAR HAMILTONIANS: 
THE EXISTENCE OF QUASI-PERIODIC 

SOLUTIONS AND NONLINEAR STABILITY 

CHJAN C. LIM 

In this note, we announce results concerning the existence of quasi-
periodic solutions for a class of singular Hamiltonians, and the nonlinear 
stability of singularities (as opposed to equilibria). A third result con­
cerns the existence of bounded, connected and open invariant sets in the 
neighborhood of singularities. Historically, the existence of quasi-periodic 
solutions and nonlinear stability of equilibria for Hamiltonian systems are 
established via the KAM theorems [Al, A2, Ml, M2]. When the question 
of quasi-periodic behavior in the neighborhood of singularities is the is­
sue (as in the restricted 3-body problem near one of the primaries), the 
singularity is transformed into an equilibrium by an appropriate regular­
ization (cf. the classic papers [C and M3]). To the best of our knowledge, 
there is no regularization procedure for the class of singular Hamiltonians 
discussed here. We therefore adopt a different approach. 

Existence of quasi-periodic solutions. We consider the Hamiltonian, 
m 

(1) H(ql,...,qn]pl,...,pn) = Y,Kjl°Z\fj(zi>'>->Zn)\ 
7=1 

with the following properties 

(A) Zj = qj + ipj and Kj are real coefficients, 

(B) fj(z\,..., zn) are entire functions of n complex variables, 

(C) the zero level sets, Mj = f~l(0) are complex hyperplanes 
which intersect at a unique point, z* (without any loss in 
generality, z* = 0). 

This class of Hamiltonians arise in several applications notably Af-body 
problems. In these problems m = N(N - l)/2, the number of edges in the 
complete graph consisting of N vertices; n equals N - 1, the number of 
independent degrees of freedom after the usual reduction in the presence 
of translational symmetry. 
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It is convenient to use the complex formulation given below; the branch 
of the logarithm function is immaterial here 

m 

(2) Hein zn) = J2Kjlog[fj(zl z„)]. 

The complex equations of motion are 

(3) zj = t— , = ! , . . . , « . 

Taking real and imaginary parts, one recovers the usual Hamilton's equa­
tions 

(4) qj = Wj, pj = — , = ! , . . , « . 

In order to apply the KAM theorem in a neighborhood of the branch 
point z*, we first construct special open sets in phase space called cone 
sets that are bounded away from the singular manifolds defined in (C) and 
satisfy an additional condition on the variables z,-, 

Ml = U=(zlt...,zn)\0 < | n | < S\z2\ <ô2\z3\ < ... 
( 5 ) , 1 

<ôn-l\zn\<ône}, S = 0(e). 
Now Lemma 1 states that the Hamiltonian (1) can be written as a small 
perturbation of an integrable term in the cone sets. 

LEMMA 1. Consider the Hamiltonian (1) with the additional assump­
tions, 

for all k <m, (dfic/dzh)(z
¥) ^Ofor some h < k, but 

(dfk/dzh)(z*) = 0 forh>k. 

Then, in the open sets (5), the Hamiltonian (1) is 
(i) a O(e) perturbation of the decoupled Hamiltonian, 

(7) tfo(z) = £ r y l o g | z y | ; 
7=1 

(ii) the perturbation is real analytic in the action variables (J\,..., /„) 
and In-periodic in the angles (6\,..., dn) where zh — y/7heWft. 

SKETCH OF PROOF. In the sets M/ which lie in an e-ball centered at the 
origin z* = 0 of R2n, Taylor expansions for the entire functions /}(z) give 
(after using the complex formulation), 

m m 

(8) H = ^2Kjlog\zhU)\ + ̂ 2Kjlog\(l + 0(e)\. 
j=\ j=i 

The function h(j) < j is defined to be the largest index of the complex 
variables zt for which (dfj(0)/dzj) ^ 0. Condition (6) implies h(j) is well 
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defined for 1 < j < m. Thus the completely integrable term, Ho, is given 
by (7) where Tj = J2iex. Kt and the set Xj = 0' ^ {;,..., m}\h(i) = j}. 
From (8), it is clear that the perturbation is O(e) in M/ and conclusion 
(ii) follows immediately. 

Next an application of the KAM theorem [Al, Ml] gives a condition 
on the coefficients Ty which guarantees the existence of quasi-periodic so­
lutions for the original Hamiltonian (1). 

THEOREM 1. If the coefficients T, in H0(7) satisfy the condition 

(9) nr^° 
7=1 

then there exists a positive measure set of quasi-periodic solutions for (1) in 
a sufficiently small neighborhood of the point z* (=0). 

SKETCH OF PROOF. For sufficiently small e, Lemma 1 implies that all 
except one of the KAM hypotheses are satisfied in Mf. It remains to 
verify that the nondegeneracy condition [Al, Ml] holds when condition 
(9) is valid (which is an easy computation). 

Nonlinear stability of singularities. For two degrees of freedom, the sta­
bility of Hamiltonian singularities can be discussed in a manner that par­
allels the usual nonlinear stability theory of equilibria [A2, Ml]. First we 
need a definition. 

DEFINITION. A singularity, z* = (z*, z|) of a given Hamiltonian H = 
H(z\, z2) is nonlinearly stable if given e > 0, 33 > 0 such that if |z(0)-z* | < 
ô then \z(t) - z*| < e W e (-oo, oo). The norm |z| is given by 

(|z,|2 + |z2|2)1/2. 
where \ZJ\ is the modulus of the complex variable Zj for j = 1,2. We 
consider two types of singularities here, namely the logarithmic branch 
point and the simple pole. Results for other singularities are discussed in 
[LI, L2]. 

THEOREM 2. Consider the Hamiltonian 

H = co{ log(/0 ± œ2log(J2) + HX{JX,J2,6x62) 
in action-angle form where a>\,co2 are positive real numbers. H\ is real 
analytic in J\,J2, In-periodic in d\fÖ2 and 0(J\,J2) in the neighborhood 
of the singularity (J\, J2) = (0,0) = 0. 

(i) In the plus case, for all co\, o;2 0 is nonlinearly stable. 
(ii) In the minus case, 0 is nonlinearly stable ifco\ ^ o)2-
REMARKS. The singularity at the origin 0 is the unique intersection 

point of the singular manifolds defined by J\ = 0 and J2 = 0 respectively. 
SKETCH OF PROOF FOR THE PLUS CASE. The isoenergetic version of the 

KAM theorem is applied to the product of punctured disks for the complex 
variables zx and z2 (where zh = \/7heidh), i.e. 

(10) (A0 x Z)2°)(«) = {(zuz2) e C2|0 <Jl,0<J2,Ji+J2< e2}. 
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On Mh, the 3-dimensional isoenergetic manifold for 

H0(Ji,J2) = log(J^J?), 

we have J^Jp = e~h. For h sufficiently large, M^ intersects D^ x D% 
with e < 1. M h is foliated by tori that are parametrized by J\ (J2 can be 
solved from the above relation) but note that as J\ \ 0, J2 / 00. Thus 
the entire interior of these tori is not contained in the e-neighborhood, 
(10). This motivates the key idea of trapping an orbit in the annular 
region between two KAM tori on the same energy surface. Provided the 
isoenergetic form of the nondegeneracy condition holds the KAM theorem 
[Al, Ml] implies that a large set of invariant tori for the full Hamiltonian, 
H can be found in sufficiently small e-neighborhood of the origin. Now 
given by e > 0, 3 a sufficiently small ô > 0 such that a point in the ô-
neighborhood (in the sense of (10)) is contained in the annular region 
between 2 KAM tori on the same Mh for some energy h. This annular 
region is an invariant subset of the e-neighborhood thus establishing the 
stability of 0. It remains to verify that the isoenergetic nondegeneracy 
condition holds for Ho i.e. the determinant of the bordered Hessian is 
nonzero which is an easy computation. 

The proofs for part (ii) above and Theorem 3 are similar. 

THEOREM 3. Consider the Hamiltonian 

H = ^ + ^+Hl(Ji,J2,el,d2) 
J\ J2 

where H\ satisfies the same conditions as in Theorem 2. The singularity 
0 = (0,0) is nonlinearly stable for all values ofco\, 0)2. 

These results should be contrasted to the stability results for elliptic 
equilibria of Hamiltonian systems [Al, Ml, MS] where typically, addi­
tional terms in the normal form are required in order to satisfy the non­
degeneracy conditions. 

Bounded, connected and open invariant sets. Consider a 2 degrees of 
freedom Hamiltonian which has the form of a small perturbation 

(11) H(Jl,J2,Olt02) = Ho(Ji,J2) + Hl(Jl,J2,Ol,02) 

only in a restricted neighborhood of the origin in R4. This is the case 
for the Hamiltonian (1) discussed above. The existence of quasi-periodic 
solutions is thus guaranteed in the cone sets (5) but not for a full neigh­
borhood of the singularity, z* (=0) by Theorem 1. Hence, the nonlinear 
stability theory is not applicable. On the other hand, Theorem 4 gives the 
construction of invariant sets that are open in R4 and lie in the neighbor­
hood of the origin. In Theorem 4, the origin can be an elliptic equilibrium 
point or a singularity such as a logarithmic branch point or a pole. This 
theorem implies that quasi-periodic solutions in the neighborhood of the 
origin become bounded orbits that remain near the origin when perturbed 
slightly. 
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THEOREM 4. Consider the Hamiltonian (11) such that H\ is real-analytic 
in J\,J2, In-periodic in 61,62 and 0(e) only in some open subset of an 
e-neighborhood of the origin. IfHo(J\,J2) satisfies the isoenergetic nonde-
generacy KAM condition, then there exists bounded, open and connected 
invariant sets in a sufficiently small neighborhood of the origin. 

SKETCH OF PROOF. On an isoenergetic manifold M^ which intersects the 
open subset in which H\ is O(e), choose an invariant torus T(\); clearly the 
bordered Hessian at T{\) is bounded away from zero. T{\) has rotation 
number ƒ* = OO\I(JO\ which is strongly nonresonant. By continuity of the 
bordered Hessian, the sufficiently short segment of frequencies 

{œx,o)2) = (to)\,t(o*2), te(l-S,l+S) 

with constant rotation number, ƒ * has a corresponding curve of invariant 
tori, {T(t)} which passes through T(l) on Mh. The union of the interior 

r = (Jint(r(0) 
t 

is a connected and bounded invariant set for the Hamiltonian system. 
It remains to show that the curve of the tori {T(t)} does not lie in one 
3-dimensional energy manifold. This follows from the isoenergetic non-
degeneracy condition. 

Applications. We end this note by a brief discussion of the applications. 
Theorems 1 and 2 can be applied to iV-body problems with logarithmic 
potential interaction such as vortex dynamics [LI, L2, L3, L4] and two-
dimensional charge dynamics (the guiding center models) [MO]. Theorem 
4 is useful for proving the observability (or persistence) of clusters in N-
body problems. 
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