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PRESCRIBED HOLONOMY FOR PROJECTIVE 
STRUCTURES ON COMPACT SURFACES 

DANIEL M. GALLO 

1. Introduction. Let S be a compact oriented surface of genus g > 2. 
Let U be the universal cover of S and denote the Riemann sphere by C. 
The group of 2 x 2 complex matrices with determinant equal to 1 will be 
denoted by SL(2,C). The quotient group PSL(2,C) = SL(2,C)/{±id} is 
canonically isomorphic to the group of conformai automorphisms of C. 

A projective structure on S consists of 
(i) an orientation preserving local homeomorphism (or developing map) 

ƒ : £ / - C , and 
(ii) a homomorphism (or holonomy map) <j>: n\(S) —• PSL(2,C) such 

that ƒ o y{x) = cf>(y) o f(x) for all yenx (S), xeU. 
Identifying C with the boundary of the open unit ball B3 c R3, there is 

a natural extension of the action of PSL(2, C) on C to an action on B3 UC. 
A subgroup G of PSL(2, C) will be called elementary if there is a subset of 
B3 U C consisting of one or two points which is invariant under G. 

The purpose of this note is to announce 

THEOREM 1. Let (/>: n\(S) -* PSL(2, C) be a homomorphism which lifts 
to SL(2,C) with (/)(n\(S)) nonelementary. Then (p is the holonomy of a 
projective structure on S. 

It is well known that the converse is true. More precisely, if (j> is the 
holonomy of a projective structure on S then 

(i) (j)(7t\(S)) is nonelementary (see [6]), and 
(ii) (j) lifts to SL(2,C) (see [4,5]). 
Classically, the theory of projective structures on compact surfaces has 

been closely related to problems concerning uniformization and discontin
uous groups. The names of Klein and Poincaré stand out in this context. 
In modern times the work of Ahlfors and Bers has revitalized interest in the 
theory and more recently the geometric, topological methods of Thurston 
[8,9] have shed new light on it. Finally, we note that Theorem 1 was con
jectured by Thurston. For more details on the history of the subject see 
Gunning [5] or Hejhal [6] and the references therein. 

In the special case that <j)(7t\(S)) c PSL(2,R), Theorem 1 was proved 
by Gallo, Goldman and Porter [1]. If 0(7TI(5)) has an invariant circle (for 
its action on C) then it is conjugate to a finite extension of a subgroup of 
PSL(2, R). Consequently, in this case, a slight modification of the methods 
found in [1] can be used to prove the theorem. 
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We give a brief outline of the proof for the remaining case. 

2. The SL(2,C) condition. Given a homomorphism 

fa. m(S) -+ PSL(2,C) 

there is a natural action of n\ (S) on C/xC (for y e n\ (S) and (x, y) e t/xC, 
y(x, j;) = (y(.x),0(y)O>))) and the suspension E^ = (U x C)/n\(S) is a 
sphere bundle over S. These bundles are characterized topologically by 
their Stief el-Whitney classes W+ e H2 (S, Z2). 

For P c S an open surface we define (except in some degenerate cases) 
the relative Stiefel-Whitney class W^tP e H2(P, dP, Z2) by specifying canon
ical sections from dP into the principal bundle associated to E#. This is 
the natural generalization of the relative Euler class defined by Goldman 
[1,2,3]. 

An element of PSL(2, C) is called loxodromic with rotation angle 6 if it 
is conjugate to a transformation of the form y(z) = rewz with r > 1 and 
—n < 6 < n (if 6 = 0 the element will be called hyperbolic). 

Now let P c S be a pair of pants and identify n\(P) with a subgroup 
of 7t\(S). Thus 7t\(P) = (y\, y2) with y\f y2 € n\(S). A path of homomor-
phisms fa : (y\, y2) —• PSL(2, C) with f e [0,1] will be called a deformation 
if for fc = 1,2, 0f(yA:) and 0,(yi oy2) (hence <t>t(y2°y\) also) are loxodromic 
with rotation angle different from n for all t. 

A homomorphism c\>: (y\,y2) —• PSL(2,R) is of type 1 if </>(yi),0(y2), 
fayx ° 72)? and ^(y2 ° 7i) are hyperbolic with axes oriented as in Figure 1 
(or Figure 1 with the arrows reversed). 

To prove Theorem 1 we use 

PROPOSITION 1. Let fa. n\(S) -* PSL(2,C) be a nonelementary homo
morphism which lifts to SL{2, C). Then there exists a pants decomposition 
P\ > • • • » Pig-i of S with the following properties: 

(i) fay) is loxodromic for each y e 7t\(S) homotopic to a boundary com
ponent of (some) Pj,' 

(ii) (here fa will denote the restriction of<\> to 7i\(Pj))> fa: (y/,i, y/,2) --*
, 

PSL(2,C) is an isomorphism onto a Schottky group with free generators 
(l>Ayj,\) = y'j,x^j{yj,2) = y,

j,v 
(iii) W^p. = 1; 
(iv) fa: 7i\(Pj) -» PSL(2,C) is deformable to a type 1 isomorphism. 
The proposition is proved by applying Dehn twists to the surface S. 

The proofs of (i) and (ii) use only the fact that fani(S)) is nonelementary. 
To prove (iii) and (iv) one needs that 

2s-2 

(1-1) £ ^/>;=mod2^ = 0. 
7=1 

The first equality in (1-1) follows from the addition formula in elemen
tary obstruction theory (see Steenrod [7]). The second equality follows 
from the assumption that <p lifts to SL(2, C). 



PROJECTIVE STRUCTURES ON COMPACT SURFACES 33 

FIGURE 1 FIGURE 2 

(In these figures ly denotes a canonical curve for the Mobius transfor
mation y.) 

3. The developing map. Let y(z) = Xz with A = reie, r > 1 and -n < 
6 < n. The curve ex : R —• C - {0} given by Cx(s) = Xs is invariant under y. 
A simple curve c : R —• C - {0} (invariant under y) will be called canonical 
(for y) if lim5_-oo c(s) — oo, lim5_,_oo c(s) = 0 and the simple closed curve 
c(R)/(y) is homotopic (in the torus (C - {0})/(y)) to cA(R)/(y). It is clear 
how to define canonical curves for arbitrary loxodromic elements. 

Now choose P\,..., Pig-i a pants decomposition of S as in Proposition 
1. Let 71 : U -* S be the natural projection onto U/n\(S) = S. Let Uj c U 
be a component of n~x{Pj) invariant under n\(Pj) = (yy.i,^) a nd let 
Cjtk,Cjik be (mutually) disjoint circles with y'j)k{Cjtk) = Cj^ (Figure 2) 
which realize (/)j(n\(Pj)) as a Schottky group. 

Since 07 is deformable to a type 1 isomorphism it is easy to show that 
one may choose a region Rj c C bounded by arcs on the circles C,-̂ , C'jk 

and arcs on canonical curves for the elements y'jV y'ji2, y'jX o y'j2, y'j>2 o y'jX 

such that Rj/(j>j{7t\(Pj)) is a pair of pants (Figure 2). 
The existence of the region Rj allows one to define a homeomorphism 

fji Uj —• C which is a developing map for fa: 7t\(Pj) -> PSX(2,C). The 
map fj extends to the boundary components of Uj sending them onto 
canonical curves. On the basis of this last fact one may use cutting and 
pasting techniques similar to those in [1] to obtain a developing map 
ƒ : U —• C for the homomorphism 0. Full details will appear elsewhere. 

The author is indebted to W. Goldman for introducing him to Thurston's 
approach to projective structures and for his constant reminder that The
orem 1 should be true. 
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