
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 20, Number 1, January 1989 

ON REAL ALGEBRAIC MODELS OF SMOOTH MANIFOLDS 

J. BOCHNAK AND W. KUCHARZ 

An affine nonsingular real algebraic variety X difFeomorphic to a smooth 
manifold M is said to be an algebraic model of M. The remarkable theo
rem of Nash-Tognoli asserts that each compact smooth manifold M has an 
algebraic model [16 or 6, Theorem 14.1.10]. In fact, there exists an infinite 
family {X/}/€N of irreducible algebraic models of M such that Xt and Xj 
are birationally nonisomorphic for i / j [10] (cf. also [7] for a proof in a 
special case). In view of these results, it seems natural and interesting to 
investigate algebro-geometric properties of various algebraic models of a 
given smooth manifold. This paper addresses a few questions of this type. 
For notions and results of real algebraic geometry we refer the reader to 
the book [6]. 

Given a compact affine nonsingular real algebraic variety X, denote 
by H*l*(X, Z/2) the subgroup of Hk(X, Z/2) of the homology classes rep
resented by (Zariski closed) fc-dimensional algebraic subvarieties of X 
[6, Chapter 11 or 11]. Let H^(X,Z/2) be the image of H^k(XfZ/2)9 

d = dimX, under the Poincaré duality isomorphism Hd_k(X,Z/2) -> 
Hk(X, Z/2). Although the groups Hk

lg(X, Z/2) are one of the most impor
tant invariants of X (a sample of applications can be found in [1, 2, 3, 
6, 8, 9]), our knowledge of their behavior is still rather limited. Here we 
consider the following. 

PROBLEM. Let M be a compact smooth manifold and let G be a sub
group of Hk(M, Z/2). When are there an algebraic model X of M and a 
diffeomorphism ç>: X —• M such that the induced isomorphism 

<p*:Hk(M,Z/2) -+ Hk{X,Z/2) 

maps G onto Hk
Xg(X, Z/2)? 

This problem has attracted the attention of several mathematicians (cf. 
[3, 4, 5, 6, 12, 14, 15]), however, the results are far from complete. We 
have a solution for k = 1, M connected, and dim M > 3. 

THEOREM 1. Let M be a compact connected smooth manifold with dim M 
> 3 and let G be a subgroup ofH{(M, Z/2). Then the following conditions 
are equivalent: 

(i) There exists an algebraic model X of M and a diffeomorphism <p: X —• 
M such that <p*(G) = H^(X, Z/2). 

(ii) The first Stiefel-Whitney class w\(M) of M is in G. 
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In particular, if M is orientable, then (i) is always satisfied. 

For smooth surfaces and k = 1 we have only a partial, but quite satis
factory, solution. First let us define the following invariants of a compact 
nonsingular real algebraic surface X: 

/}(X) = dimH^(X,Z/2), 
1*12 

8{X) = dim{u € HJ^iX, Z/2)|« U t; = 0}. 
Z/2 

If X is connected, orientable (resp. nonorientable of odd topological genus), 
then/?(X) = Ô(X) (resp. fi(X) = S(X)+l; indeed, Wi(X) is in H^(X, Z/2) 
[6, Theorem 12.4.8] and w\(X) U W\(X) ^ 0). For X connected, nonori
entable of even topological genus, one has either fi(X) = S(X) or fi(X) = 
S(X) + 1 and, in accordance with Theorem 2 below, all topologically pos
sible cases can be realized algebraically. 

THEOREM 2. Let M be a compact connected smooth surface of genus g. 
(i) If M is orientable (resp. nonorientable of odd genus) and ft is an 

integer satisfying 0 < fi < 2g (resp. 1 < /? < g), then there exists an 
algebraic model Xp of M with p(Xp) = /?. 

(ii) If M is nonorientable of even genus and /? and S are integers satisfying 
either /? = <?, I < 0 < g — I, or /} = S + 1, 2 < fi < g, then there exists an 
algebraic model Xpt$ of M such that fi(Xp>0) = fi and S(X^>s) — S. 

Our interest in the invariants fi(X) and ô(X) is explained by the fact 
that they determine the projective module group Ko(R(X)) of the ring 
R(X) of regular functions from X to R. 

THEOREM 3. (i) Let X be a compact connected affine nonsingular real 
algebraic surface. Then 

K0(Z(X)) sze(z/4)W-w e (z/2)^+1-w-w). 
(ii) As X runs through all algebraic models of a compact, connected 

surface M of genus g, then the groups KQ(R(X)) take, up to isomorphism, 
precisely q(M) values, where 

Î
2g 4-1 if M is orientable, 
g if M is nonorientable and g is odd, 

2g - 2 if M is nonorientable and g is even. 
Condition (i) is proved in [9], while (ii) follows immediately from (i) 

and Theorem 2. 
Here is another application. Given a compact affine nonsingular real 

algebraic variety X, let C°°(X,Sl) denote the topological group of C°° 
mappings from X to the unit circle S{ = {z e C\\z\ = 1} (the group 
structure on C°°(X,S{) is induced from that on Sl and the topology is 
the C°° one). Let R(X,Sl) be the closure in C°°(X,Sl) of the subgroup 
k(X, Sx) of regular mappings from X to S{. Below we are concerned with 
the quotient group 

r(X) = C°°(X,S1)/JZ(X,S1). 
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THEOREM 4. Let M be a compact connected smooth manifold with 
dim M 
> 2. Let 

rM:Hl(M,Z)®Z/2->Hl(M,Z/2) 
be the canonical monomorphism and let 

( ranki/^Af, Z) - 1 if M is nonorientable, 
a(M) = < and W\(M) e ImagerM, 

[ rankHl(M,Z) otherwise. 

(i) For each algebraic model X ofM, one has T{X) = (Z/2)5 for some s 
with 0<s< a(M). 

(ii) For each integer s satisfying 0 < s < a(M), there exists an algebraic 
model Xs of M with r(Xs) = (Z/2)5. 

SKETCH OF PROOF. Let X be a compact affine nonsingular real algebraic 
variety. By [8, Theorem 1.4], a mapping ƒ in C°°(XfS

l) is in Z(X,Sl) if 
and only if f*(Hl(S{,Z/2)) is contained in H^(X,Z/2). It follows that 
T(X) is isomorphic to the quotient group A/B, where A = Image rx and 
B — An H^g(X,Z/2). This implies (i) and, applying Theorems 1 and 2, 
also (ii). 

Proofs of Theorems 1 and 2 are quite involved. Here we can only sketch 
the proof of Theorem 1. 

The implication (i) => (ii) is well known (cf. [6, Theorem 12.4.8]). Sup
pose then that (ii) holds. One easily finds a C°° embedding i:M -> P of 
M into the product P = RPkl x • • • x RPkr of real projective spaces with 
i*(Hl(P, Z/2)) = G. It requires some care to construct a compact smooth 
surface S in M such that j*(v) ^ 0 for all v in H = Hl(M, Z/2)\G, where 
j:S —• M is the inclusion mapping, and S bounds a compact smooth sub-
manifold W of M with the property that the normal vector bundles of 
i(W) in i(M) and P are trivial. Using the triviality of the normal vector 
bundle of i(W) in P, one shows the existence of a C°° diffeomorphism 
h:P —• P, arbitrarily close in the C°° topology to the identity mapping, 
such that Y = h(i(S)) is a nonsingular algebraic subvariety of P (cf. [12, 
§2]). Moreover, and this is the hard part of the construction, h can be cho
sen in such a way that H^(Yf Z/2) = 0. To achieve this, one uses, in par
ticular, appropriate real algebraic versions of the theorem of Gherardelli 
[13, Theorem 6.5] and the theorem of Noether-Lefschetz-Moishezon [13, 
Theorem 7.5] concerning the Picard group of complex projective varieties. 

Since H*^(P, Z/2) = H*{P, Z/2) and Y has trivial normal vector bundle 
in N = h(i(M)), it follows from [1, Proposition 2.8] that there exist a 
positive integer q and a C°° embedding e:N x {0} -+ P x R*, arbitrarily 
close in the C°° topology to the inclusion mapping N x {0} -> P x R#, 
such that X = e(N x {0}) is a nonsingular algebraic subvariety of P x 
R̂  containing Y x {0}. Clearly, (p:X —• M, defined by the condition 
e(h(i(<p(x))), 0) = x for x in X, is a C°° diffeomorphism and H^(X, Z/2) 
contains <p*{G). Since H^(Y x {0},Z/2) = 0 and f*(v*(v)) £ 0 for all 
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v in H, where f:Y x {0} —• X is the inclusion mapping, it follows that 
p*(G) = H^(X,Z/2), i.e., (i) is satisfied. 
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