SINGULAR SOBOLEV CONNECTIONS WITH HOLONOMY

L. M. SIBNER AND R. J. SIBNER

We consider local Sobolev connections on SU(2) bundles over the complement, in \mathbb{R}^4 , of a smoothly embedded compact 2-manifold. Finite action implies that a holonomy condition is satisfied and we obtain an a priori estimate for the connection 1-form in terms of curvature and the flat connection carrying the holonomy. The a priori estimate classifies the possible singularities in these connections by the set of flat connections. In a certain case, this leads to smoothness and extendability results.

Let N be a full 4-dimensional neighborhood of the singular set S. The objects of study are connections D = d + A defined on SU(2) bundles over $X = N \setminus S$. We assume that $A \in H^2_{1,loc}(X)$ and that the action is finite, i.e., the curvature $F = dA + A \wedge A$ is in $L^2(N)$.

The following holonomy condition was first stated by Cliff Taubes. Choose coordinates (r, θ, u, v) with (u, v) coordinates on S and (r, θ) coordinates in a plane normal to S. Fixing u and v, and denoting by A_{θ} the θ component of A, the initial value problem for an SU(2) valued function,

$$\frac{dg_r}{d\theta} + A_\theta g_r = 0, \qquad g_r(0) = I,$$

has a unique solution $g_r(\theta)$, with $g_r(2\pi) = J_r \in SU(2)$. The holonomy condition we require is

(H)
$$\lim_{r \to 0} J_r = J^{\flat} \text{ exists.}$$

This condition is gauge invariant up to conjugacy in SU(2). Our results can be formulated in two theorems.

THEOREM 1. If A and F are smooth on $N \setminus S$ and $F \in L^2(N)$, then (H) is satisfied for almost all u and v. Up to conjugacy, the limit is independent of u and v.

Next, assume (H) holds. Locally, the conjugacy class $[J^b] \in SU(2)$ uniquely defines a flat connection $A^b = C d\theta$ with C a constant element of su(2) determined up to a similarity transformation. Our second result uses holonomy to obtain an a priori estimate. We denote by X_0 and N_0 the intersections of Xand N with a small open set in \mathbb{R}^4 having nonvoid intersection with S.

1980 Mathematics Subject Classification (1985 Revision). Primary 35J60, 53C80.

©1988 American Mathematical Society 0273-0979/88 \$1.00 + \$.25 per page

Received by the editors February 23, 1988.

Research of the first author partially supported by NSF grant DMS-8501419.

Research of the second author partially supported by NSF grant INT-8411481.

THEOREM 2. Suppose $\hat{D} = d + \hat{A}$ satisfies (H) with $\hat{A} \in H^2_{1,\text{loc}}(X_0)$ and $\|F\|_{L^2(N_0)}$ sufficiently small. Then there is a flat connection A^{\flat} determined by $[J^{\flat}]$, and a universal constant K, such that \hat{D} is gauge equivalent to D = d + A, with $d^*A = 0$ and

$$||A - A^{\flat}||_{H^{2}_{1}(N_{0})} \leq K ||F||_{L^{2}(N_{0})}.$$

Note that if $[J^{\flat}] = I$, then A is gauge equivalent to the zero connection form. In this case, D extends as an H_1^2 connection to all of N_0 . If, in addition, field equations are satisfied, more smoothness follows from elliptic theory.

Theorem 1 is proved by making a good choice of gauge in which the Fourier coefficients of A_{θ} can be estimated in terms of F. These estimates can be used to show that $A_{\theta} d\theta$ converges to a flat connection as r tends to zero. This flat connection carries the holonomy. To show that the limit is independent of u and v requires another good choice of gauge and Stokes' theorem.

To prove Theorem 2, we carry out a plan of attack suggested by Cliff Taubes. This involves an open-closed argument similar to that used in $[U_1,$ Theorem 1.3]. The large space consists of the appropriate Sobolev space of connections satisfying the same holonomy condition. This space is shown to be connected. The subspace consists of connections which admit a Hodge gauge satisfying certain boundary and limiting conditions which imply the a priori estimate. (Detailed proofs will appear in a forthcoming article.)

Theorem 1 settles a conjecture of Atiyah's. Both theorems are related to recent work on the moduli space of magnetic monopoles over hyperbolic 3-space $[\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{F}]$ and to Yang-Mills fields over S^4 whose topological charge is not integral $[\mathbf{FH}_1, \mathbf{FH}_2]$.

ACKNOWLEDGEMENTS. We are greatly indebted to Cliff Taubes and Ed Miller for their invaluable assistance and encouragement.

REFERENCES

[A] M. F. Atiyah, Magnetic monopoles in hyperbolic spaces, Vector Bundles on Algebraic Varieties, Tata Institute of Fundamental Research, Bombay (1984), 1-33.

[B] P. J. Braam, Magnetic monopoles on three-manifolds, J. Differential Geom. (to appear).

[C] A. Chakrabarti, Spherically and axially symmetric SU(N) instanton chains with monopole limits, Nuclear Physics **B248** (1984), 209-252.

[F] A. Floer, Monopoles on asymptotically euclidean 3-manifolds, Bull. Amer. Math. Soc.
(NS) 16 (1987), 125–127.

 $[\mathbf{FH}_1]$ P. Forgacs, Z. Horvath and L. Palla, An exact fractionally charged self dual solution, Phys. Rev. Lett. **46** (1981), 392.

[FH₂] _____, One can have noninteger topological charge, Z. Phys. C-Particles and Fields 12 (1982), 359-360.

 $[\mathbf{S}]$ L. M. Sibner, Removable singularities of Yang-Mills fields in $\mathbb{R}^3,$ Compositio Math. 53 (1984), 91–104.

[Sm] P. D. Smith, Removable singularities for the Yang-Mills-Higgs equations in two dimensions, preprint.

[SS] L. M. Sibner and R. J. Sibner, Removable singularities of coupled Yang-Mills fields in \mathbb{R}^3 , Comm. Math. Phys. 93 (1984), 1–17.

 $[U_1]$ K. Uhlenbeck, Connections with L^p bounds on curvature, Comm. Math. Phys. 83 (1982), 31-42.

 $[U_2]$ _____, Removable singularities in Yang-Mills fields, Comm. Math. Phys. 83 (1982), 11–29.

DEPARTMENT OF MATHEMATICS, POLYTECHNIC UNIVERSITY OF NEW YORK, BROOKLYN, NEW YORK 11201

DEPARTMENT OF MATHEMATICS, BROOKLYN COLLEGE (CUNY), BROOKLYN, NEW YORK 11210