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AN INVARIANT APPROACH TO THE THEORY 
OF LOGARITHMIC KODAIRA DIMENSION 

OF ALGEBRAIC VARIETIES 

ZHAOHUA LUO 

Let V be an algebraic variety defined over a field k. If K is the rational 
function field of V, then V is called a model of K/k, and the local ring of a 
point of V is a locality of V. Let L(K/k) be the set of discrete valuation rings 
of K/k. Define 

L(V) = {Re L{K/k) | R dominates a locality of V}, 

L(V) = {Re L(K/k) | R is a locality of the normalization V of V}. 

If V' is another model of K/k and L(V) = L(Vf), then we say that V and 
V' are proper birationally equivalent. The logarithmic Kodaira dimension 
K(V) oîV introduced by Iitaka (see [1]) is one of the most important proper 
birational invariants of V. litaka's treatment requires Hironaka's theory of 
resolution of singularities, and therefore at present does not apply to the cases 
of positive characteristics. In this note we shall describe a simple invariant 
approach to the theory of logarithmic Kodaira dimension of algebraic varieties 
defined over an arbitrary base field. 

I would like to thank Professor T. Matsusaka for his encouragement 
throughout the stages of development of these results. 

1. A divisor of K/k is by definition a map w: L(K/k) —• Z U {+00} such 
that w~x(Z - {0}) C\L(V) is a finite set for one (therefore for any) model V of 
K/k; w is called absolute if w(L(K/k)) Ç Z; it is called effective (denoted by 
w > 0) if w(R) > 0 for all R G L(K/k). For any u G K we define the principal 
divisor (u)x/k of K/k by (u)K/k{R) = VR(U) f° r aU R € L(K/k), where VR 
is the normalized discrete valuation of K/k determined by R G L(K/k). 
The divisors of K/k form an abelian semigroup under pointwise addition. 
Two divisors w and w' of K/k are linearly equivalent (notation: w ~ w') if 
w = w' + {u)K/k for some uE K. 

Let V be a model of K/k. We define two divisors Sy and Ty of L(K/k) 
by the following rules: 

Sy{R) = 0 îorReL(V), (Ty(R)=0 îorReL(V), 

Sy{R) = +l for R£L{V) I TV{R) = +00 for R $ L{V). 

If w is a divisor of K/k we define 

W y = W + 5 y , Wy = W + Ty. 
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Let T(K/k) be the set of pairs (R, R') of regular localities of K/k such that 
R dominates R' C R and krulldimjR = 1. Any absolute divisor w of K/k 
determines a map rw : T(K/k) —• Z by 

rw(R,R') = w(R)-vR(u) 

where u is a local function of w at /£' (i.e. VR»(U) = w(R") for any # " € 
L (spec (#'))). We call rw the ramification index of K/k determined by w. 

An absolute divisor w of üC/fc is called proper birationally invariant if for 
any {R,R') G T(K/k) we have rw(R,R') > krulldimiî' - 1. 

Given any dominating pair (R, R') of regular local rings such that 

krulldimJR = l 

and the quotient field of R is a finite separable extension of the quotient field 
of .R', we introduce two invariants of (R,R'): 

r{R,R') = vR(d(R/R')), where d(R/R') is the Kâhler different of R over 

e(R,R') = max{vR(ui,...,ur) | (tii , . . . , te r) is a minimal basis of the 
maximal ideal of R'}. 

The integers r(R^R') and e(R,R') are called the ramification index and 
the reduced ramification index of (JR, R') respectively. 

In case that krulldim R' = 1 we have r(R, R') > e(R, R') - 1 by the main 
theorem of ramification theory of algebraic number theory due to Dedekind. 
In [3] we proved that this is true in general, i.e., 

r{R,R') > e{R,R') - 1 > krulldimfl7 - 1. 

(see [4] for an application of this formula). 
Now back to our birational situation. We have the following theorem. 

THEOREM 1.1. If w is a proper birationally invariant divisor of K/k, 
then rw{R,R') > r(R,R') > e(R,R') - 1 for any (R,R') € T(K/k). 

2. We shall fix a polynomial ring A — © ° ^ 0 M = K[X] in one variable 
X over K. For any divisor w of K/k and m = uX% G Ai we let w(m) = 
{U)K/1C + iw (w e assume 0 • (+oo) = + oo); put Ci(w) = {m G Ai | w(m) > 0}, 

C(w) = ® ^ 0 Ci{w), Z{w) = QC{w) D K where QC(w) is the quotient field 
of C{w), and K(W) = trans. degC(w)/fc - 1. Define Z(w) = f]Z(wy) and 
R = minK(WV), where V runs through the set of models of K/k. One can 
prove the following theorem easily (cf. [2]). 

THEOREM 2 . 1 . Ifw andw' are linearly equivalent divisors of K/kJhen 
C(w) = C(wf); C(w) is an integrally closed k-graded algebra; Z(w) and Z(w) 
are algebraically closed in K; if w is absolute, then dim^Ci < -hoo. 

Suppose X is a model of K/k and D a reduced divisor of the normalization 
X of X. If L(V) = L(X - sup£>), then the pair (X,D) is called a model of 
V; if D = 0 we also say that X is a model of V. A model {X,D) of V is 
regular if X is nonsingular, D is a sum of nonsingular subvarieties and sup D 
has only normal crossings. 



LOGARITHMIC KODAIRA DIMENSION 321 

With the help of Theorem 1.1 we can prove the following 

THEOREM 2.2. If w is d proper birationaily invariant absolute divisor of 
K/k and (X, D) a regular complete model of a model V of K/k, then 

C{<Sv) = C((«v)x) = 0 #°(X, Ox(i(w(X) + D)), 
i=0 

where w(X) = W|L(X) *'* the Weil divisor of X induced by w, Z(wy) = 
Z(wy) = Z((wv)x) and K,(wy) = R(wy) = «((wv)x)-

PROOF. It suffices to prove that C(wy) = C((wy)x) because then all 
the other assertions follow by definitions. Since wy < {wv)x, C(wy) Ç 
C{(wv)x), so we only need to prove C((wy)x) Ç C(wy). 

To simplify notations we write w' for wy and w" for (wy)x-
For any P G L(K/k) let R' be the local ring of the center P of VR on X. 

Then P G sup 2} if and only if JR ÇÉ L(V). Let ( u i , . . . , ur) be a minimal basis 
of the maximal ideal of R' such that, if P G sup JD, (wi,. . . ,t/t) is a set of 
local equations of the divisor D at P for some 1 < t < r. Write a = t/i • • • ur 

and 6 = t*i • • • t*t (if JR G L(V) we let 6 = 1). Let u' be a local function of w 
&tR'. 

Now suppose m = wX1 € Ci(w"). We have to prove that m € Ci(w'), 
i.e., ^/(m)(JR) > 0 for any P G L(K/k). For any P " € L(spec(P0) we have 
w"(m)(P") = vRn(u(ufbY) > 0, which implies that u(u'bY eftR" = R' Q R-
It follows that vR{u)+i(vR(u')+vR(b)) > 0. But w{R) - ^(w7) > vR{a) - 1 
by Theorem 1.1. Hence 
(*) vR{u) + i(w(R) + 1 - ««(a) + v«(6)) > 0. 

Now recall the definition of w'(m)(R): 

w'(m){R) = vR{u) + i(w(R) + 1) for P i L(V), 

w'{m){R) = vR(u) + i(w(R)) for P € L(V). 

If P $É Z(V) then it;/(m)(P) > 0 because in (*) -vR{a) + vR{b) < 0. If P € 
L{V) then iü ,(m)(P) > 0 because in (*) vR{b) = vR{l) = 0 and 1 -vR{a) < 0. 
Thus we have proved that wf(m)(R) > 0 for any P € L(K/k). This finishes 
the proof. 

3. Let k' be a perfect subfield of A: (e.g., the prime field of k) and D(K/k') 
the differential module of K over fc'. A subset B of ÜC is called a fc'-differential 
basis of K/k if dB is a if-linear basis for D(K/kf) and B — P fi k is a finite 
set. If P G L(K/k) we proved in [2] that P d P is an P-free module and there 
exists a fc'-differential basis BR of K/k such that dBR is an P-free basis for 
RdR\ BR is called a set of fc'-uniformizing coordinates of P . 

For any two fc'-differential bases P , B' of K/k one can define an element 
J ( P , P ' ) G if, uniquely determined by (P, P') up to a factor in the alge­
braic closure fc of fc in K, such that, if P , P ' are two sets of fc'-uniformizing 
coordinates for some P G L(üC/fc), then J(B,Bf) is an invertible element of 
P . 

For any fc'-differential basis P of üC/fc we define the divisor (P) of K/k by 
(P)(P) = vR(J(B,BR)), where P# is a set of fc'-uniformizing coordinates of 
P . 
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If k" is another perfect subfield of k and B" a /^''-differential basis of K/k, 
then one can show that (B) and (B") are linearly equivalent. Any divisor of 
K/k which is linearly equivalent to (B) is called a canonical divisor of K/k. 
We summarize the main properties of the canonical divisors of K/k in the 
following theorem. 

THEOREM 3 . 1 . (l)IfF is a subfield of K containing k, then ( £ ) | L ( K / F ) 
is a canonical divisor of K/F; (2) (B) is proper birationally invariant. 

4. Let V be a model of K/k and w a canonical divisor of K/k. It is 
easy to see that C(wy), Z(wy), Z(wv), «(t&v), K(WV) are proper birational 
invariants of.F, denoted by C(V), Z(V), ~Z{V), /c(V), R(V) respectively. If 
V is complete, then wy = w, therefore C(V), Z(V),... are all birational 
invariants of V, denoted by C(K/k), Z(K/k),... respectively. 

DEFINITION 4.1. /c(V) and K,(K/k) are called the (logarithmic) Kodaira 
dimension of F and if/A; respectively; £(V) and R(K/k) are the virtual (log­
arithmic) Kodaira dimension of V and K respectively. 

Since canonical divisors of K/k are proper birationally invariant, we see 
from Theorem 2.2 that our definition of K(V) is equivalent to that of Iitaka's 
whenever the latter is applicable (notice that K(V) is usually denoted by 
k(V)). 

Let F be a subfield of K containing k. If U = spec B is an affine open 
subset of V, then U' = spec F(B) is an affine model of K/F, here F(B) is the 
affine ring of K/F generated by the affine ring B over F. The collection of 
all such U' defines a model VK/F °f K/F. Applying Theorem 3.1(1) we can 
prove the following 

THEOREM 4.2 . (1) IfR{V) > 0 then R{VK/^{V)) = 0; (2) IfR{VK/F) = 0 

then F D ~Z(V); (3) K(V) < K(VK/F) + dimF/k and K(V) < K{VK/F) + 
dimF/k. 

THEOREM 4 .3 . Any K/k can be uniquely factored into a series of exten­
sions: k C k = F0 Ç Fx £ F2 • • • Ç Fr^ ÇFr=K,0<r< dimK/k such 
that (1) every F{ is algebraically closed in K; (2) K(FI/FQ) < 0 or R(FI/FQ) = 
dimFx/Fo; (3) i c ^ / f i - i ) = 0 /or 1 < t < r; (4) / C ( F J F 0 ) = d imF^i /Fo 
/or 1 < i < r. 

When ch k = p > 0 for geometric reasons it is important to know whether 
K/Z(K/k) is a regular extension in the case that 0 < K{K/k) < dim K/k. In 
this respect we have the following. 

THEOREM 4.4. Suppose p ^ 2,3, and R{K/k) = dimK/k - 1. Then 
K/Z(K/k) is a regular extension. 

PROOF. We have dim K/J{K/k) = 1 and K{K/J{K/k)) = Jz(K/Z{K/k)) 
= 0 by Theorem 4.3. Thus the genus of K/Z(K/k) is 1. According to 
[5], the genus g of an inseparable algebraic function field of one variable of 
characteristic p > 0 satisfies the relation 2g > p(p — 3) + 2. In our case g = 1 
and p ^ 2,3. It is immediate that K/Z(K/k) must be a separably generated 
extension, hence a regular extension. 
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COROLLARY 4 .5 . Suppose k is perfect and p ^ 2,3, and dim K/k < 3. 
Then K/Z{K/k) is separably generated. 

5. Let V be a model of K/k and P{V) = {f e Autfc K | the map 
ƒ': L{K/k) - • L(K/k) induced by ƒ maps L(V) onto L(V)}. If V = spec 5 
is a normal affine model of K/k then B = n#eL(v) R, hence ƒ € P(V) if and 
only if f(B) = B; therefore P(V) = Autk(B). 

THEOREM 5 .1 . Assume k is algebraically closed. (1) If K,(K/k) = 
dim K/k, then Autfcif is a finite group. (2) If K{V) = dimV, then P{V) 
is a finite group. (3) Suppose V = spec£? and V has a regular complete 
model. If K,(K/k) > 0, then P(V) is a finite group. 

The assertion (3) follows directly from (2) since K(V) = dimV under the 
assumption; (2) is due to litaka when ch k = 0, which generalizes the classical 
result that, if dim K/k = 1 and the genus of K/k is 1, then the group of all 
automorphisms of K/k that leaves a given place of K/k fixed is finite. Finally 
(1) is well known when K/k has a nonsingular complete model. 
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