BI-INVARIANT SCHWARTZ MULTIPLIERS AND LOCAL SOLVABILITY ON NILPOTENT LIE GROUPS

JOE W. JENKINS

Let X denote a finite-dimensional vector space with a fixed positive definite inner product, and let $\mathscr{S}(X)$ denote the Schwartz space on X. We let $\mathscr{MS}(X)$ denote the space of continuous endomorphisms of $\mathscr{S}(X)$ that commute with the action of X on $\mathscr{S}(X)$. The elements of $\mathscr{MS}(X)$ are given by convolution by tempered distributions; i.e., for $E \in \mathscr{MS}(X)$ there is a $D_E \in \mathscr{S}^*(X)$ such that $Ef(x) = \langle D_E, l_x \check{f} \rangle := D_E * f(x)$, where $\check{f}(x) = f(-x)$ and $l_x f(y) = f(y - x)$. Conversely, if $D \in \mathscr{S}^*(X)$, then one can easily see that $E_D: f \to D * f$ is a mapping of $\mathscr{S}(X)$ into the smooth functions on X that commutes with translation. Schwartz [S] shows that $E_D \in \mathscr{MS}(X)$ if and only if \hat{D} , the Fourier transform of D, is given by a smooth function on X^* which has polynomial bounds on all derivatives. In this note we announce analogues of these results for arbitrary nilpotent Lie groups. Complete proofs will appear elsewhere.

Let N denote a connected, simply connected nilpotent Lie group, with Lie algebra n. The exponential mapping, exp: $n \to N$, is a diffeomorphism, and in terms of the corresponding coordinates left and right translation on N are polynomial mappings. Thus, if $\mathscr{S}(N)$ denotes the image under composition with exp of $\mathscr{S}(n)$, the right and left action of N on $\mathscr{S}(N)$ are continuous endomorphisms, where $\mathscr{S}(N)$ is topologized so that composition with exp is an isomorphism from $\mathscr{S}(n)$ to $\mathscr{S}(N)$. We denote by $\mathscr{S}^*(N)$ the dual of $\mathscr{S}(N)$, the space of tempered distributions on N.

For $f \in \mathscr{S}(N)$, the Fourier transform of f, \hat{f} , is defined on \mathfrak{n}^* , the dual of \mathfrak{n} , by

$$\hat{f}(\xi) = \int_{\mathfrak{n}} f(\exp X) e^{-2\pi i \langle \xi, X \rangle} \, dX.$$

One has that $f \to \hat{f}$ is an isomorphism from $\mathscr{S}(N)$ onto $\mathscr{S}(\mathfrak{n}^*)$. For $D \in \mathscr{S}^*(N)$, \hat{D} is defined on $\mathscr{S}(\mathfrak{n}^*)$ by $\langle \hat{D}, f \rangle = \langle D, \hat{f} \circ \log \rangle$, where log denotes the inverse of exp.

Let Ad^{*} denote the coadjoint representation of N on n^{*}. A tempered distribution D on n^{*} is said to be Ad^{*}-invariant if $\langle D, f \circ \text{Ad}^* x \rangle = \langle D, f \rangle$ for all $x \in N$ and $f \in \mathscr{S}(n^*)$. A tempered distribution D on N is said to be bi-invariant if $\langle D, \mathfrak{r}_{x^{-1}}f \rangle = \langle D, l_x f \rangle$ for all $f \in \mathscr{S}(N)$, where $\mathfrak{r}_x f(y) = f(yx)$ and $l_x f(y) = f(x^{-1}y)$ for all $x, y \in N$. A straightforward computation shows that an element $D \in \mathscr{S}(N)$ is bi-invariant if and only if \hat{D} is Ad^{*}-invariant.

©1988 American Mathematical Society 0273-0979/88 \$1.00 + \$.25 per page

Received by the editors January 22, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 22E30, 43A55.

This research supported in part by a grant from the National Science Foundation.

Let $\mathscr{MS}(N)$ denote the space of continuous endomorphisms on $\mathscr{S}(N)$ that commute with both right and left translations by elements of N. As in the Euclidean case, one has that for each $E \in \mathscr{MS}(N)$ there is a $D_E \in \mathscr{S}^*(N)$ such that $Ef = D_E * f$, where, as before, $D_E * f(x) := \langle D_E, l_x f \rangle$. If $D \in$ $\mathscr{S}^*(N)$ we denote by E_D the mapping defined on $\mathscr{S}(N)$ by $E_D f = D * f$.

Let $PB_N^{\infty}(\mathfrak{n}^*)$ denote the space of smooth, Ad^{*}-invariant functions defined on \mathfrak{n}^* with polynomial bounds on all derivatives. This space is topologized using the seminorms ν_{ij} defined on $PB_N^{\infty}(\mathfrak{n}^*)$ by

$$\nu_{ij}(\theta) = \sup_{|\alpha| \le j} \sup_{\xi \in \mathfrak{n}^*} |\partial^{\alpha} \theta(\xi)| / (1 + ||\xi||^2)^i,$$

where ∂^{α} denotes the standard differential operator corresponding to the multi-index α , and some fixed basis of \mathfrak{n}^* . A sequence $\{E_n\} \subset \mathscr{MS}(N)$ converges to 0 if $E_n f \to 0$ in $\mathscr{S}(N)$ for each $f \in \mathscr{S}(N)$.

THEOREM A. The mapping $\mathscr{MS}(N) \to PB_N^{\infty}(\mathfrak{n}^*): E \to \widehat{D}_E$ is a homeomorphism and an algebra isomorphism, the products being composition on $\mathscr{MS}(N)$ and pointwise multiplication on $PB_N^{\infty}(\mathfrak{n}^*)$.

For $\xi \in \mathfrak{n}^*$, let π_{ξ} denote the irreducible unitary representation of N that corresponds to the Ad^{*}-orbit of ξ by the Kirillov theory. For $\theta \in PB_N^{\infty}(\mathfrak{n}^*)$, let D_{θ} be the tempered distribution on N with Fourier transform θ .

THEOREM B. For $\theta \in PB_N^{\infty}(\mathfrak{n}^*)$, $f \in \mathscr{S}(N)$, and $\xi \in \mathfrak{n}^*$, $\pi_{\xi}(D_{\theta} * f) = \theta(\xi)\pi_{\xi}(f)$.

As an application of these results, we consider the question of local solvability. Recall that a left invariant differential operator L on N is said to be locally solvable if there is an open set $U \subset N$ such that $C_c^{\infty}(U) \subset L(C^{\infty}(U))$.

Let $o(\xi)$ denote the Ad^{*}-orbit in \mathfrak{n}^* that contains ξ , and having fixed a norm on \mathfrak{n}^* , set $|o(\xi)| = \inf\{||\xi'||: \xi' \in o(\xi)\}$. Suppose that N contains a discrete, cocompact subgroup Γ . Then $L^2(\Gamma \setminus N)$ is a direct sum of subspaces \mathscr{H}_{ξ} such that the restriction to \mathscr{H}_{ξ} of right translation is a finite multiple of π_{ξ} . We denote by $(\Gamma \setminus N)_0^{\wedge}$ the elements of \widehat{N} appearing in this decomposition that are in general position.

THEOREM C. Let L be a left invariant differential operator on N. Suppose that for each $\pi_{\xi} \in (\Gamma \setminus N)_0^{\wedge}$, $\pi_{\xi}(L)$ has a bounded right inverse A_{ξ} on \mathscr{H}_{ξ} , and that the norm of A_{ξ} is bounded by a polynomial in $|o(\xi)|$. Then L is locally solvable.

The proof of Theorem A requires the introduction of somewhat more general spaces. Let \mathscr{K} be a subspace of the center of \mathscr{R} , and let $\lambda \in \mathscr{K}^*$. We define the unitary character χ_{λ} on $H := \exp(\mathscr{K})$ by $\chi_{\lambda}(\exp X) = e^{2\pi i \langle \lambda, X \rangle}$, and denote by $\mathscr{S}(N/H, \chi_{\lambda})$ the space of all smooth functions f defined on N such that $f(xy) = \chi_{\lambda}(y)f(x)$ for all $x \in N$, $y \in H$, and such that $f \circ \exp_{|\mathscr{K}|} \in \mathscr{S}(\mathscr{K})$, where \mathscr{K} is a complement to \mathscr{K} in \mathscr{R} . The topology of $\mathscr{S}(N/H, \chi_{\lambda})$ is defined by requiring that the mapping $f \to f \circ \exp_{|\mathscr{K}|}$ be a homeomorphism. Define $P_{\lambda} : \mathscr{S}(N) \to \mathscr{S}(N/H, \chi_{\lambda})$ by

$$P_{\lambda}f(\exp X) = \int_{\mathscr{A}} f(\exp(X+Y))\chi_{\lambda}(-Y)\,dY.$$

 P_{λ} is an open surjection and thus its adjoint P_{λ}^* is an isomorphism of $\mathscr{S}^*(N/H, \chi_{\lambda})$ into $\mathscr{S}^*(N)$.

Let \mathscr{A}^{\perp} be the annihilator of \mathscr{A} in \mathscr{R}^* . For $\lambda \in \mathscr{K}^*$ (identified as a subspace of \mathscr{R}^*), there is a natural Schwartz space on $\mathscr{A}^{\perp} + \lambda$, $\mathscr{S}(\mathscr{A}^{\perp} + \lambda)$, given by composing elements of $\mathscr{S}(\mathscr{A}^{\perp})$ with translation by $-\lambda$. Considering $\mathscr{S}(N/H, \chi_{\lambda})$ and $\mathscr{S}(\mathscr{A}^{\perp} + \lambda)$ as subspaces of $\mathscr{S}^*(N)$ and $\mathscr{S}^*(\mathscr{R}^*)$ respectively, the Fourier transform is defined on these spaces and one has that $f \to \hat{f}$ is an isomorphism of $\mathscr{S}(N/H, \chi_{\lambda})$ onto $\mathscr{S}(\mathscr{R}^{\perp} + \lambda)$ and of $\mathscr{S}(\mathscr{R}^{\perp} + \lambda)$ onto $\mathscr{S}(N/H, \chi_{\lambda})$, $(P_{\lambda}^*D)^{\wedge} = R_{-\lambda}^*\widetilde{D}$, where $R_{\lambda} \colon \mathscr{S}(\mathscr{R}^*) \to \mathscr{S}(\mathscr{R}^{\perp} + \lambda)$ is restriction, and \widetilde{D} is the element in $\mathscr{S}^*(\mathscr{R}^{\perp} - \lambda)$ defined by $\langle \widetilde{D}, f \rangle = \langle D, \hat{f} \rangle$. Thus $(P_{\lambda}^*D)^{\wedge}$ is supported on $\mathscr{R}^{\perp} + \lambda$ and has no normal derivatives.

For $f \in \mathscr{S}(N/H, \chi_{\lambda})$ and $D \in \mathscr{S}^*(N/H, \chi_{-\lambda})$, the convolution D * f is defined by setting $D * f(x) = \langle D, l_x(\check{f}) \rangle$ for each $x \in N$. Suppose now that $D \in \mathscr{S}^*(N)$ and $f \in \mathscr{S}(N)$. One can use Abelian Fourier analysis to study the mapping defined on x, the center of n, by $Y \to D * f(\exp(X + Y))$. If this mapping is in $\mathscr{S}(x)$, then

$$D * f(\exp X) = \int_{\mathscr{X}^*} P_{\lambda}(D * f)(\exp X) \, d\lambda,$$

for appropriately normalized Lebesgue measure $d\lambda$. Furthermore, $P_{\lambda}(D*f) = D_{\lambda} * P_{\lambda}f$, where D_{λ} is the element of $\mathscr{S}^*(N/H, \chi_{-\lambda})$ whose Fourier transform, \tilde{D}_{λ} , agrees with the restriction to $\ell^{\perp} + \lambda$ of \hat{D} . Thus, convolution between elements of $\mathscr{S}^*(N)$ and $\mathscr{S}(N)$ decomposes into convolutions between elements of $\mathscr{S}^*(N/H, \chi_{-\lambda})$ and $\mathscr{S}(N/H, \chi_{\lambda})$ in such a way that smoothness and growth conditions on \hat{D} , $D \in \mathscr{S}^*(N)$ are inherited by \tilde{D}_{λ} , $D_{\lambda} \in \mathscr{S}^*(N/H, \chi_{-\lambda})$. One then proceeds by induction on the dimension of N/H. Of course, this requires maintaining considerable control of the various seminorm estimates that appear in the decompositions.

The proof of Theorem B follows along the usual induction argument lines with the Plancherel Theorem being used to reduce the dimension.

For Theorem C, one constructs a θ on \mathfrak{n}^* such that both θ and $1/\theta$ are in $PB_N^{\infty}(\mathfrak{n}^*)$, and such that $\sum ||A(\xi)||\theta(\xi) < \infty$, the sum being over $(\Gamma \setminus N)_0^{\wedge}$. One then uses the fact that $(D_{1/\theta} * f) * (D_{\theta} * g) = f * g$ and the Dixmier and Mallivan [**DM**] factorization to complete the proof.

REMARKS. The fact that $D_{\theta} \in \mathscr{MS}(N)$ was proved by R. Howe in [H], and indeed, the ideas presented there are the foundation of this work. Theorem B was proved for the case where θ is a polynomial by A. Kirillov in [K]. In [CG], L. Corwin and F. Greenleaf proved Theorem C with the additional assumption that all the representations in general position were induced from a common, normal subgroup. One-sided Schwartz multipliers have been studied by L. Corwin in [C].

J. W. JENKINS

References

[C] L. Corwin, Tempered distributions on Heisenberg groups whose convolution with Schwartz class functions is Schwartz class, J. Funct. Anal. 44 (1981), 328-347.

[CG] L. Corwin and F. Greenleaf, Solvability of certain left-invariant differential operators by nilmanifold theory, Comm. Pure Appl. Math. 36 (1983), 755-765.

[DM] J. Dixmier et P. Mallivan, Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. 102 (1978), 305-330.

[H] R. Howe, On a connection between nilpotent groups and oscillatory integrals associated to singularities, Pacific J. Math. 73 (1977), 329-364.

[K] A. Kirillov, Unitary representations of nilpotent Lie groups, Uspekhi Mat. Nauk. 17 (1962), 57-110.

[R] M. Rais, Solutions elémentaires des operateurs différentiels bi-invariants sur un groupe de Lie nilpotent, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A495-498.

[S] L. Schwartz, Théorie des distributions, tome II, Hermann, Paris, 1959.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY AT ALBANY, STATE UNIVERSITY OF NEW YORK, ALBANY, NEW YORK 12222