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DYSON'S CRANK OF A PARTITION 

GEORGE E. ANDREWS AND F. G. GARVAN 

1. Introduction. In [3], F. J. Dyson defined the rank of a partition as the 
largest part minus the number of parts. He let 7V(ra, t, n) denote the number 
of partitions of n of rank congruent to m modulo £, and he conjectured 

(1.1) 7V(m, 5,5n + 4) = ±p(5n + 4), 0 < m < 4; 

(1.2) JV(ra,7,7n + 5) = ±p(7n + 5), 0 < m < 6, 

where p(n) is the total number of partitions of n [1, Chapter 1]. These 
conjectures were subsequently proved by Atkin and Swinnerton-Dyer [2]. 

Dyson [3] went on to observe that the rank did not separate the partition 
of 1 In -I- 6 into 11 equal classes even though Ramanujan's congruence 

(1.3) p( l ln + 6 ) = 0 (mod 11) 

holds. He was thus led to conjecture the existence of some other partition 
statistic (which he called the crank); this unknown statistic should provide a 
combinatorial interpretation of ^-p(lln + 6) in the same way that (1.1) and 
(1.2) treat the primes 5 and 7. 

In [4, 5], one of us was able to find a crank relative to vector partitions as 
follows: 

For a partition 7r, let #(7r) be the number of parts of ir and cr{n) be the 
sum of the parts of ir (or the number ir is partitioning) with the convention 
#(</>) = <j{<t>) = 0 for the empty partition 0, of 0. Let 

V = {(7Ti,7T2,7T3) 17Ti is a partition into distinct parts, 

7T2,7T3 are unrestricted partitions} . 

We shall call the elements of V vector partitions. For 7? = (7Ti, 7r2, ^3) in V we 
define the sum of parts, s, a weight, a;, and a crank, r, by 

(1.4) 8(*) = ör(TTi) + a{7T2) + (T{TT3), 

(1.5) <47r) = ( - l ) # ^ ) , 
(1.6) r(7f) = #(7r2)-#(7r3) . 

We say 7? is a vector partition of n if 5(7?) = n. For example, if 

# = ( 5 + 3 +2 ,2 + 2 +1 ,2 + 1 + 1) 
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then 5(7?) = 19, a;(7?) = — 1, r(ir) = 0 and 7? is a vector partition of 19. The 
number of vector partitions of n (counted according to the weight u) with 
crank m is denoted by Nv{m, n), so that 

(1.7) Nv(m,n) = £ w(tf). 
fiev 

r(rt)=m 

The number of vector partitions of n (counted according to the weight u) 
with crank congruent to k modulo t is denoted by iVy(fc,£,n), so that 

00 

(1.8) Nv(k,t,n)= ^2 Nv{mt + k,n)= ^ u(jf). 
m=-oo jf£V 

r(7f)=fc(modt) 

By considering the transformation that interchanges 7T2 and n^ we have 

(1.9) Ny (m, n) = Ny (-m, n) 

so that 

(1.10) Nv(t - ra, *, n) = Nv(m, t, n). 

We have the following generating function for iVv(m,n): 

(1.11) Y Y Nv{m,n)zmqn = TT K\* )
 t , . 

m=-oon=0 n=l V ^ /V * ' 

By putting z = 1 in (1.11) we find 
00 

(1.12) ] T #v(m,n)=p(n) . 
m=—oo 

VECTOR-CRANK THEOREM (GARVAN [4, 5]). 

(1.13) 

iVv(0,5,5n + 4) = JVv(l,5,5n + 4) = •-. = 7Vv(4,5,5n + 4) = p ( 5 n + 4) ? 

(1.14) 
p(7n + 5) 

JVv(0,7,7n + 5) = iVv(l,7,7n + 5) = --- = Av(6>7,7n + 5) = 

(1.15) JVv(0,11, l in + 6) = • • • = iVv(10,11, l in -f 6) = 

7 
p(lln + 6) 

11 
The above still leaves open the question of whether there is a crank for 

ordinary partitions. The answer is "yes" when the crank is denned as follows: 
DEFINITION. For a partition 7T, let l(ir) denote the largest part of 7r, U(IT) 

denote the number of ones in 7r, and ^(TT) denote the number of parts of w 
larger than ÜJ(TT). The crank c(w) is given by 

\ /i(ir) - u(ir) if W(TT) > 0. 
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Our main result is the following. 

THEOREM 1. The number of partitions nofn with c(?r) = m is iVV(ra, n) 
for alln > 1. 

Obviously, in light of the Vector-Crank Theorem, we see that Theorem 1 
supplies the crank asked for by Dyson. 

2. PROOF OF THEOREM 1. We shall require the standard notation of 
^-series: 

(2.1) (A;g)n = (^)n = n ( 1
( 1 _ " ^ ) 

(= (1 - A){1 — Aq) • • • (1 - Aqn~x) when n is a positive integer), and 

(2.2) (A;g)oo = (A)oo = n ( l - V ) -
3=0 

We now transform (1.11): 

E V^ M (™ „Wm„» _ ( 1 ~ g ) (92;g) 

m=-oon=0 
(^)oo (q/z)c 

( 1 - q ) f , < 7 ^ 
(*«)» , t ï ( 9 2 ; 9 ) i - i ( V + 1 ) o o ' 

As was noted in (1.12), when we set z = 1 the series on the left of (2.3) reduces 
to the generating function for p{n). For j > 0, the jth term in the sum on 
the right is 

j times 

z-jqi+i+...+i 
(1 - g2)(l - « 8 ) . . . ( i _ 9 i ) ( i _ ^ i + i ) ( i _ ^ + 2 ) . . . " 

The standard techniques of partition theory [1, Chapter 1] show that this 
expression generates partitions with uj(ir) = j and the exponent on z is clearly 
//(7r) - u;(7r), i.e. c(7r), since j > 0. 

Thus we must interpret 

( i - « ) 
( l - ^ ) ( l - ^ 2 ) ( 1 _ ^ 3 ) . 

as the generating function for partitions without ones. By considering conju­
gate partitions, we note that 

(l-zq)(l-zq*)(l-zq*) 
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generates all partitions with the exponent on z counting the largest part, and 
for integers larger than 1 

Q 
( 1 - * 0 ) ( 1 - * 9 2 ) ( 1 - Z f l 3 ) . . . 

generates partitions with at least one 1 appearing again with the exponent on 
z counting the largest part. Note that this interpretation fails for 1 because 
this is the unique instance in which introducing a 1 into the partitions of n — 1 
alters the largest part. Hence 

(*tf)oo 

counts (for n > 1) the number of partitions with no ones and with the ex­
ponent on z being the largest part of the partition l(ir) = C(T). Thus in the 
double series expansion of 

(l-q) fk g»W 
(*«)~ ,ti(«a;«)i-i(*«,'+1)~ 

we see that the coefficient of zmqn (n > 1) is the number of ordinary partitions 
of n in which c(7r) = m. Therefore by (2.3), we have Theorem 1. D 

3. Conclusion. We can't resist exhibiting c(ir) for the first instance of 
(1.3). 

partitions of 6 l(ir) w(7r) ^(TT) C(IT) 

6 
5 + 1 
4 + 2 

4 + 1 + 1 
3 + 3 

3 + 2 + 1 
3+1+1+1 
2 + 2 + 2 

2+2+1+1 
2+1+1+1+1 

1+1+1+1+1+1 

6 
5 
4 
4 
3 
3 
3 
2 
2 
2 
1 

0 
1 
0 
2 
0 
1 
3 
0 
2 
4 
6 

1 
1 
2 
1 
2 
2 
0 
3 
0 
0 
0 

6 
0 
4 

-1 
3 
1 

-3 
2 

-2 
-4 
-6 

As Theorem 1 together with (1.15) predicts, C(TT) provides eleven different 
residue classes modulo 11. 
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