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DYSON’S CRANK OF A PARTITION

GEORGE E. ANDREWS AND F. G. GARVAN

1. Introduction. In (3], F. J. Dyson defined the rank of a partition as the
largest part minus the number of parts. He let N(m,t,n) denote the number
of partitions of n of rank congruent to m modulo ¢, and he conjectured

(1.1) N(m,5,5n+4) = ip(5n+4), 0<m<4
(1.2) N(m,7,Tn+5) = 3p(Tn+5), 0<m <8,

where p(n) is the total number of partitions of n [1, Chapter 1]. These
conjectures were subsequently proved by Atkin and Swinnerton-Dyer [2].

Dyson [3] went on to observe that the rank did not separate the partition
of 11n + 6 into 11 equal classes even though Ramanujan’s congruence

(1.3) p(lln+6)=0  (mod1l)

holds. He was thus led to conjecture the existence of some other partition
statistic (which he called the crank); this unknown statistic should provide a
combinatorial interpretation of & p(11n + 6) in the same way that (1.1) and
(1.2) treat the primes 5 and 7.

In [4, 5], one of us was able to find a crank relative to vector partitions as
follows:

For a partition , let # () be the number of parts of = and o(r) be the
sum of the parts of = (or the number = is partitioning) with the convention
#(¢) = 0(¢) = 0 for the empty partition @, of 0. Let

V = {(m1,m2,m3) | ™ is a partition into distinct parts,
e, T3 are unrestricted partitions}.

We shall call the elements of V' vector partitions. For & = (my, 72, m3) in V we
define the sum of parts, s, a weight, w, and a crank, r, by

(1.4) 8(®) = o(m) + o(m2) + o(73),
(1.5) w(#) = (~1)#),
(1.6) r(7) = #(m2) — #(m3).

We say 7 is a vector partition of n if s8(#) = n. For example, if
F=(5+3+2,2+2+1,2+1+1)
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then s(7) = 19, w(®) = ~1, r(7) = 0 and 7 is a vector partition of 19. The
number of vector partitions of n (counted according to the weight w) with
crank m is denoted by Ny (m,n), so that

(1.7) Ny(m,n)= ) w(#).
eV
s(®)=n
r(#)=m
The number of vector partitions of n (counted according to the weight w)
with crank congruent to k modulo ¢ is denoted by Ny (k,t,n), so that

(e o]
(1.8) Ny(k,t,n)= > Ny(mt+kn)= Y w@.
m=-00 #eV
s(®)=n

r(#)=k(modt)
By considering the transformation that interchanges w2 and 73 we have

(1.9) Ny (m,n) = Ny(—m,n)
so that
(1.10) Ny (t — m,t,n) = Ny(m,t,n).
We have the following generating function for Ny (m,n):
= = m_n M (1 _ qn)
(1.11) m=z—oon2=%NV (m,n)2™q" = £[l =Tk
By putting z =1 in (1.11) we find
[ <]
(1.12) Z Ny (m,n) = p(n).
m=—00
VECTOR-CRANK THEOREM (GARVAN [4, 5]).

(1.13)

Ny (0,5,5n +4) = Ny(1,5,5n +4) = --- = Ny (4,5,5n + 4) = ’i@sif‘l,
(1.14)

Ny(0,7,7n+5) = Ny(1,7,Tn+5) = - = Ny (6,7, Tn +5) = ’M,
(1.15) Ny (0,11,11n+6) = --- = Ny(10,11,11n + 6) = ”(11++6—).

The above still leaves open the question of whether there is a crank for
ordinary partitions. The answer is “yes” when the crank is defined as follows:

DEFINITION. For a partition , let {(w) denote the largest part of 7, w(w)
denote the number of ones in 7, and u(w) denote the number of parts of 7
larger than w(n). The crank c(w) is given by

_f Um) if w(7) =0,
e(r) = { p(r) —w(m) if w(m) > 0.
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Our main result is the following.

THEOREM 1. The number of partitions = of n with c(x) = m is Ny (m,n)
for allmn > 1.

Obviously, in light of the Vector-Crank Theorem, we see that Theorem 1
supplies the crank asked for by Dyson.

2. PROOF OF THEOREM 1. We shall require the standard notation of
g-series:
oo .
o) = — (1-Ag)
(2.1) (A;@)n = (A)n = H u—_—m

Jj=0
(=(1-A)(1-Ag)---(1— Ag™!) when n is a positive integer), and
(22) (4;9)o0 = (A)oo = H(l - Ag).
=0
We now transform (1.11):

SRS m n_(l_q)'(q%Q)oo
2 2 Nmma " = o e

m=—00 n=0

(2.3) _U-a¥ > G/, [1, p. 17))

(29)oo =0 ‘I)J

_(1-9 < ¢z
+
" (29)00 Z (0% 9)j-1(2¢" ) oo

Jj=1

As was noted in (1.12), when we set z = 1 the series on the left of (2.3) reduces
to the generating function for p(n). For j > 0, the jth term in the sum on
the right is

. J times
zmigitit+1
(1-¢%)(1-¢%) - (1—¢7)(1 — 2g7+1)(1 — 2g7+2) .-~
The standard techniques of partition theory [1, Chapter 1] show that this
expression generates partitions with w(m) = 5 and the exponent on z is clearly
p(r) — w(r), i.e. ¢(r), since j > 0.
Thus we must interpret

(1-4q)
(1-29)(1—2¢%)(1 - 2¢3)---
as the generating function for partitions without ones. By considering conju-
gate partitions, we note that

1
(1-29)(1-2¢%)(1—2¢%)---
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generates all partitions with the exponent on z counting the largest part, and
for integers larger than 1

q
(1—2q)(1 - 2¢?)(1 — 2¢®) -
generates partitions with at least one 1 appearing again with the exponent on
z counting the largest part. Note that this interpretation fails for 1 because
this is the unique instance in which introducing a 1 into the partitions of n—1
alters the largest part. Hence

1-¢

(#9) o
counts (for n > 1) the number of partitions with no ones and with the ex-
ponent on z being the largest part of the partition {(7) = ¢(n). Thus in the
double series expansion of

we see that the coefficient of z™¢" (n > 1) is the number of ordinary partitions
of n in which ¢(m) = m. Therefore by (2.3), we have Theorem 1. O

3. Conclusion. We can’t resist exhibiting c(w) for the first instance of

(1.3).
partitions of 6 I(m) w(r) wp(r) c(m)
6 6 0 1 6
5+1 5 1 1 0
442 4 0 2 4
4+1+1 4 2 1 -1
3+3 3 0 2 3
3+2+1 3 1 2 1
3+1+4+1+1 3 3 0 -3
2+2+2 2 0 3 2
24+2+1+1 2 2 0 -2
2+1+1+1+1 2 4 0 -4
1+1+14+1+1+1 1 6 0 -6

As Theorem 1 together with (1.15) predicts, ¢(7) provides eleven different
residue classes modulo 11.
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