
RESEARCH ANNOUNCEMENTS 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 17, Number 1, July 1987 

AMALGAMATIONS AND THE KERVAIRE PROBLEM 

S. M. GERSTEN 

ABSTRACT. Following S. Brick, a 2-complex X is called "Kervaire" if 
all systems of equations, with coefficients in arbitrary groups G and the 
attaching maps of X as the words in the variable letters, are solvable 
in an over group of G. An obstruction theory is developed for solv­
ing equations modeled on Z = Xp Y, where X and Y are Kervaire 
2-complexes and T is a subgraph of Z^x\ each connected component 
of which injects at the 7Ti-level into iri(Z). A 2-complex of the form 
K(x, y\ w(x) = w'(y)) is Kervaire, where w{x) and w'{y) are (not nec­
essarily reduced) words which do not freely reduce to 1. 

The Kervaire problem [7, p. 403] originally asked whether a nontrivial 
group can be killed by adjoining a single free generator and a single relator. 
This problem has been vastly generalized by Howie [5], who asked whether a 
system of equations over an arbitrary coefficient group G, whose words in the 
variable letters are the attaching maps of a 2-complex X with H2{X) — 0, is 
solvable in an overgroup of G. It is convenient to introduce a terminology due 
to S. Brick [1] who calls a 2-complex X Kervaire iff all systems of equations 
over all coefficient groups G modeled on the attaching maps of X are solvable 
in an overgroup of G. Thus, e.g., the dunce hat K(x\xxx) is Kervaire because 
Howie has shown that the equation axbxcx = 1, with a, 6, c G G, can always 
be solved in an overgroup of G [6]. 

In this terminology, a nontrivial group can never be killed by adjoining 
a single free generator and a single relator iff the 2-complex K(x\w(x)) is 
Kervaire, where w(x) is a word in x and x~l whose exponent sum in x is dbl. 

For a 2-complex with one 2-cell X = K(x\, £2, • • •, xn\w(x)) Howie's prob­
lem can be shown (nontrivially) to imply that X is Kervaire iff w(x) does 
not freely reduce to 1 (the "if" assertion is the nontrivial one here). Since 
X = K(x\w(x)) can be easily shown to be Cockcroft iff w(x) does not freely 
reduce to 1, Howie's problem for 2-complexes X with one 2-cell amounts to 
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the assertion that X is Kervaire iff X is Cockcroft (recall a 2-complex X is 
Cockcroft iff the Hurewicz homomorphism ^{X) —» H2(X) is zero). 

We can prove 

THEOREM 1. Let xf,xf,...,x^ and y f , . . . , y£ be disjoint alphabets and 
let w(x) and w'(y) be words in these alphabets respectively which do not freely 
reduce to 1. Then K{x\,..., xn , 2/1,. . . , ym\w(x) = w'(y)) is Kervaire. 

This result can be stated in the equivalent form below, more appealing to 
topologists, by recalling the connected sum X # F of two 2-complexes [8]. 
One chooses imbeddings of the disc D2 in X and Y respectively, each with 
one point contact with X^ and Y^\ one bores out the interiors of the discs, 
and one identifies their boundaries to get X#Y. The construction depends 
sensitively on the choice of imbeddings of discs. 

THEOREM 2. Let X and Y be Cockcroft 2-complexes each possessing only 
one 2-cell. Then X#Y is Kervaire {for all choices of imbedded discs in X 
and Y as above). 

The main technical innovation is an obstruction theory for deciding when 
Z = X\ p X2 is Kervaire provided T is a subgraph of Z^ such that 7Ti 
of each connected component of T injects into TÏ\ (Z) (S. Brick calls such an 
inclusion T —• Z TT\-injective [1]). Let ƒ: (D2, S1) —• (X, T) be a combinatorial 
map (for some cell structure on D2). We define the obstruction element 
A(ƒ) G G / * (E(T)) to be the product in order of corner labels and edge labels 
in one full circuit around dD2 ; here G/ is the factor group of the corner group 
[4] of X modulo interior vertex labels of ƒ and (E(r)) denotes a free group 
freely generated by an oriented set of edges of T. The technical result is the 
following 

THEOREM 3. Let Z = Xi^X2, where the inclusion T —> Z is TTI-
injective. Assume that Xi and X2 are Kervaire and that all obstruction 

elements A(/) = 1 for all maps (D2,Sl) •£ (X;,T), i = 1,2. Then Z is 
Kervaire. 

An example where all obstructions A( ƒ) vanish is where T is 2-sided in Z.* 
In this case Theorem 3 implies as a corollary a result of Brick's thesis [1]: if 
r is a subgraph of Z^ such that the inclusion T —• Z is 7Ti-injective and T 
is 2-sided in Z and if in addition the result of cutting Z along T is Kervaire, 
then Z is Kervaire. 

To apply Theorem 3 we need to calculate obstructions. Let X = K{xi,..., 
xn , t\t = w(x)) and let T = K(t\ ), a subgraph of X^. The inclusion T —• X 
is 7Ti-injective iff the word w(x) G F(x) does not freely reduce to 1. We prove 

THEOREM 4. For any combinatorial map f: (D2^1) —> {X,T), where X 
and T are as defined immediately above and where w(x) does not freely reduce 
to 1, one has A(f) = 1. 

*T is called "2-sided" in Z if it is bicollared: so T is identified with T x {1/2} where 
T x [0,1] is a product neighborhood of T in Z. 
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The proof of Theorem 4 proceeds by assuming ƒ is reduced (so no two 
2-cells of D2 with an edge e in common are mapped mirror-wise across e) 
and showing that, by small cancellation type arguments, in this reduced case 
the domain has a vertex of valence 1 in its 1-skeleton. This enables us to do 
2-bridge moves and at the same time reduce the size of w(x) by cancelling an 
adjacent pair of cancelling letters. The argument proceeds by an induction on 
the length of w{x), the induction beginning when w is a reduced word (^ 1); 
in this case one sees directly no such reduced maps ƒ can exist. 

Theorem 2 follows from Theorems 3 and 4 by appealing to the subdivision 
theorem for Kervaire complexes [1] and by observing that the complex X in 
Theorem 4 collapses onto a graph and is hence Kervaire. 

Similar arguments establish the following result. Recall that a 2-complex 
X is called diagrammatically reducible (DR) [4] if there are no reduced com­
binatorial maps of S2 to X. 

THEOREM 5. Let Wi{x),i E I, be a set of words in the alphabet x = 
(xf,...,x„) and assume that the elements in the free group F(x) these words 
Wi(x) represent freely generate the subgroup S of F(x). If no proper initial 
segment of any word Wi(x) represents an element ofS, then the 2-complex 

K(xi,..., xn , 2/i,..., yn\wi(x) = Wi(y),i G I) 

is diagrammatically reducible. 

COROLLARY. If F is a free group and A < F, then the double of F along 
A, F *A F, has a DR presentation. 

It is an open question whether every aspherical 2-complex is homotopy 
equivalent to a DR 2-complex (see [2, §6] for additional examples, drawn 
from 3-manifold theory, where this is true). 

Theorem 5 above has an amusing illustration. It follows immediately that 
the presentation (x,y,z,w\xnynznwn, Vn > 1) is DR. This implies [4] that 
for any group G and sequence of elements an € (2, n > 1, the system of 
equations 

an = xnynznwn, Vn > 1, 

can be simultaneously solved in an overgroup of G. 
Another explicit calculation of the obstruction element A( ƒ) shows there is 

a 2-complex which is Cockcroft but not Kervaire. Explicitly we have 

THEOREM 6. Let X = K(x,y,t\x2,y2,t = xy). Let T = K(t\ >, a TTI-
injective subgraph of X. Then the double Z of X along T, Z = X^X, is 
Cockcroft and diagrammatically aspherical but not Kervaire. 

"Diagrammatically aspherical" here means that given any combinatorial 
map of a cell structure S2 to Z, some sequence of diamond moves exists 
which splits off a component 2-sphere with precisely two faces. The example 
Z of Theorem 6 is interesting because the homotopy equivalent 2-complex 

W = (X x (0))rx(o)(r x I)rx(i)(X * (1)) 
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is Kervaire, as one sees by applying Brick's 2-sided 7Ti-injective theorem 
quoted after Theorem 3. It follows that the property of being Kervaire is 
not a homotopy type invariant of 2-complexes. 

Suppose now that X = K(P), where P is the finite presentation P = 
( x i , x 2 , . . . , x n , ^ (i € I)\U = Wi(x), i e ƒ), and let T = K(U(i G I)\ ), 
a subgraph of X^ (so X collapses cellularly onto a subgraph of X^ with 
E(T) as the set of free edges for the collapse). Let Z = X^ X, the double of 
X along T. It is easy to see that the inclusion r —• X is 7Ti-injective iff Z is 
Cockcroft iff Z is aspherical iff {^(f), i G /} is freely independent in F(x). 

THEOREM 7. If Z is Kervaire, then the inclusion T —» X is ni-injective. 
Furthermore ifY^X is ni-injective and we assume either a positive solution 
to Howie's problem or the invariance of Kervaire complexes {with one vertex) 
under Andrews-Curtis moves, then Z is Kervaire. 

Theorem 5 is used in proving the last assertion in Theorem 7 as follows. If 
{wi(Ë),i G / } is independent, then one may do Nielsen moves to transform 
this collection to a Schreier basis for the subgroup generated; here Theorem 
5 applies. On the other hand Nielsen moves on {wi(x),i G 1} correspond 
to Andrews-Curtis moves on Z, so invariance of the Kervaire property under 
these latter moves implies that Z is Kervaire. 

In this connection I have developed an algorithm for generating all reduced 
disc diagrams ƒ: {D2^1) - • (X,T) with (X,T) as in Theorem 7. The algo­
rithm is "smart" in the sense that it can select certain diagrams for which 
A(/) = 1 because of the known positive results about the Howie problem. 
Hand computations have so far led to no "interesting" diagrams, where a dia­
gram is called "interesting" if these selection rules don't automatically imply 
A(/) = 1. The algorithm ought to be programmed on a high-speed computer, 
to continue the search for "interesting" diagrams. 
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