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AMALGAMATIONS AND THE KERVAIRE PROBLEM

S. M. GERSTEN

ABSTRACT. Following S. Brick, a 2-complex X is called “Kervaire” if
all systems of equations, with coefficients in arbitrary groups G and the
attaching maps of X as the words in the variable letters, are solvable
in an overgroup of G. An obstruction theory is developed for solv-
ing equations modeled on Z = XIFIY, where X and Y are Kervaire
2-complexes and T is a subgraph of Z(1), each connected component
of which injects at the mi-level into 71(Z). A 2-complex of the form
K(Z, 7] w(%) = w'(¥)) is Kervaire, where w(Z) and w’' (%) are (not nec-
essarily reduced) words which do not freely reduce to 1.

The Kervaire problem [7, p. 403] originally asked whether a nontrivial
group can be killed by adjoining a single free generator and a single relator.
This problem has been vastly generalized by Howie [5], who asked whether a
system of equations over an arbitrary coefficient group G, whose words in the
variable letters are the attaching maps of a 2-complex X with Ho(X) =0, is
solvable in an overgroup of G. It is convenient to introduce a terminology due
to S. Brick [1] who calls a 2-complex X Kervaire iff all systems of equations
over all coefficient groups G modeled on the attaching maps of X are solvable
in an overgroup of G. Thus, e.g., the dunce hat K (z|zzZ) is Kervaire because
Howie has shown that the equation azbzcZ = 1, with a,b,c € G, can always
be solved in an overgroup of G [6].

In this terminology, a nontrivial group can never be killed by adjoining
a single free generator and a single relator iff the 2-complex K (z|w(z)) is
Kervaire, where w(z) is a word in z and 2! whose exponent sum in z is 1.

For a 2-complex with one 2-cell X = K(z1,z2,...,2,|w(Z)) Howie’s prob-
lem can be shown (nontrivially) to imply that X is Kervaire iff w(Z) does
not freely reduce to 1 (the “if” assertion is the nontrivial one here). Since
X = K(F|w(Z)) can be easily shown to be Cockeroft iff w(Z) does not freely
reduce to 1, Howie’s problem for 2-complexes X with one 2-cell amounts to
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the assertion that X is Kervaire iff X is Cockeroft (recall a 2-complex X is
Cockeroft iff the Hurewicz homomorphism 73 (X) — Ha(X) is zero).
We can prove

THEOREM 1. Letaf,zf,... zF andyf,. ..,y be disjoint alphabets and
let w(Z) and w'(§) be words in these alphabets respectively which do not freely
reduce to 1. Then K(zy,...,Zn,Y1,-..,Ym|w(Z) = w'(§)) is Kervaire.

This result can be stated in the equivalent form below, more appealing to
topologists, by recalling the connected sum X #Y of two 2-complexes [8].
One chooses imbeddings of the disc D? in X and Y respectively, each with
one point contact with X(1) and Y (), one bores out the interiors of the discs,
and one identifies their boundaries to get X # Y. The construction depends
sensitively on the choice of imbeddings of discs.

THEOREM 2. Let X andY be Cockcroft 2-complezxes each possessing only
one 2-cell. Then X #Y 1is Kervaire (for all choices of imbedded discs in X
and'Y as above).

The main technical innovation is an obstruction theory for deciding when
Z =X, {:IXQ is Kervaire provided T is a subgraph of Z(1) such that m;
of each connected component of I' injects into m1(Z) (S. Brick calls such an
inclusion I' — Z m;-injective [1]). Let f: (D?,S8') — (X,T) be a combinatorial
map (for some cell structure on D?). We define the obstruction element
A(f) € Gy *(E(T)) to be the product in order of corner labels and edge labels
in one full circuit around D?; here G is the factor group of the corner group
[4] of X modulo interior vertex labels of f and (E(r)) denotes a free group
freely generated by an oriented set of edges of I'. The technical result is the
following

THEOREM 3. Let Z = XIII:‘X;;, where the inclusion I' — Z 13 m-
injective. Assume that X; and Xo are Kervaire and that all obstruction
elements A(f) = 1 for all maps (D?,S?) 4, (X;,T), i = 1,2. Then Z 1is
Kervaire.

An example where all obstructions A(f) vanish is where T is 2-sided in Z.*
In this case Theorem 3 implies as a corollary a result of Brick’s thesis [1]: if
T is a subgraph of Z(1) such that the inclusion ' — Z is my-injective and T'
is 2-sided in Z and if in addition the result of cutting Z along I is Kervaire,
then Z is Kervaire.

To apply Theorem 3 we need to calculate obstructions. Let X = K(zq,...,
In,t|t = w(Z)) and let T = K (t| ), a subgraph of X(!). The inclusion I' — X
is 1-injective iff the word w(Z) € F(Z) does not freely reduce to 1. We prove

THEOREM 4. For any combinatorial map f:(D?,S') — (X,T), where X
and T are as defined immediately above and where w(Z) does not freely reduce
to 1, one has A(f) =1.

*T is called “2-sided” in Z if it is bicollared: so T is identified with T' x {1/2} where
T x [0, 1] is a product neighborhood of T in Z.
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The proof of Theorem 4 proceeds by assuming f is reduced (so no two
2-cells of D? with an edge e in common are mapped mirror-wise across e)
and showing that, by small cancellation type arguments, in this reduced case
the domain has a vertex of valence 1 in its 1-skeleton. This enables us to do
2-bridge moves and at the same time reduce the size of w(z) by cancelling an
adjacent pair of cancelling letters. The argument proceeds by an induction on
the length of w(Z), the induction beginning when w is a reduced word (# 1);
in this case one sees directly no such reduced maps f can exist.

Theorem 2 follows from Theorems 3 and 4 by appealing to the subdivision
theorem for Kervaire complexes [1] and by observing that the complex X in
Theorem 4 collapses onto a graph and is hence Kervaire.

Similar arguments establish the following result. Recall that a 2-complex
X is called diagrammatically reducible (DR) [4] if there are no reduced com-
binatorial maps of S to X.

THEOREM 5. Let w;(%),7 € I, be a set of words in the alphabet & =
(zF,...,2E) and assume that the elements in the free group F(Z) these words
w;(Z) represent freely generate the subgroup S of F(Z). If no proper initial

segment of any word w;(Z) represents an element of S, then the 2-complex

K<z1’ ey Tny Y1,y aynlwz(f) = wi(?j)ﬂ. < I)
18 diagrammatically reductble.

COROLLARY. If F 13 a free group and A < F, then the double of F along
A, F x5 F, has a DR presentation.

It is an open question whether every aspherical 2-complex is homotopy
equivalent to a DR 2-complex (see [2, §6] for additional examples, drawn
from 3-manifold theory, where this is true).

Theorem 5 above has an amusing illustration. It follows immediately that
the presentation (z,y, z, w|z"y"2"w™, ¥n > 1) is DR. This implies [4] that
for any group G and sequence of elements a, € G, n > 1, the system of
equations

an = z"y"2"w", VYn > 1,

can be simultaneously solved in an overgroup of G.
Another explicit calculation of the obstruction element A(f) shows there is
a 2-complex which is Cockcroft but not Kervaire. Explicitly we have

THEOREM 6. Let X = K(z,y,t|22,y%,t = zy). Let T = K(t| ), a m1-
injective subgraph of X. Then the double Z of X along T, Z = X2 X, is
Cockcroft and diagrammatically aspherical but not Kervaire.

“Diagrammatically aspherical” here means that given any combinatorial
map of a cell structure S? to Z, some sequence of diamond moves exists
which splits off a component 2-sphere with precisely two faces. The example
Z of Theorem 6 is interesting because the homotopy equivalent 2-complex

W = (X x (0))rx(0)(T X I)rx 1) (X x (1))
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is Kervaire, as one sees by applying Brick’s 2-sided m;-injective theorem
quoted after Theorem 3. It follows that the property of being Kervaire is
not a homotopy type invariant of 2-complexes.

Suppose now that X = K(P), where P is the finite presentation P =
(T1,Z2,- -y Zn,ti (1 € Dty = wi(T), ¢ € I), and let T = K(t;(z € I)| ),
a subgraph of X(1) (so X collapses cellularly onto a subgraph of X*) with
E(T) as the set of free edges for the collapse). Let Z = X ¥ X, the double of
X along T'. It is easy to see that the inclusion I' — X is my-injective iff Z is
Cockeroft iff Z is aspherical iff {w;(Z), ¢ € I} is freely independent in F(Z).

THEOREM 7. If Z is Kervaire, then the inclusion I' — X is m -injective.
Furthermore if ' — X is w1 -injective and we assume either a positive solution
to Howie’s problem or the invariance of Kervaire complexes (with one vertex)
under Andrews-Curtis moves, then Z is Kervaire.

Theorem 5 is used in proving the last assertion in Theorem 7 as follows. If
{w;(Z),7 € I} is independent, then one may do Nielsen moves to transform
this collection to a Schreier basis for the subgroup generated; here Theorem
5 applies. On the other hand Nielsen moves on {w;(%),¢ € I} correspond
to Andrews-Curtis moves on Z, so invariance of the Kervaire property under
these latter moves implies that Z is Kervaire.

In this connection I have developed an algorithm for generating all reduced
disc diagrams f: (D?%,S') — (X,T) with (X,T) as in Theorem 7. The algo-
rithm is “smart” in the sense that it can select certain diagrams for which
A(f) = 1 because of the known positive results about the Howie problem.
Hand computations have so far led to no “interesting” diagrams, where a dia-
gram is called “interesting” if these selection rules don’t automatically imply
A(f) = 1. The algorithm ought to be programmed on a high-speed computer,
to continue the search for “interesting” diagrams.
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