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Normally, the Bulletin of the American Mathematical Society reviews re­
search monographs and graduate texts. Rarely does it seem suitable that more 
elementary books be reviewed. In my opinion, the editors rightly felt that the 
book by Devaney is such an exception. The undergraduate curriculum in 
mathematics evolves rather slowly. Infrequently a serious attempt is made to 
introduce modern mathematics into the undergraduate curriculum. The rea­
sons are clear. Most modern mathematics requires sufficient background 
preparation that it is simply not accessible to a typical undergraduate. More­
over, there is a question of priorities in choosing topics courses that are 
suitable for mathematics majors. Devaney has written a book which deserves 
serious consideration as a suitable undergraduate text for an advanced under­
graduate topics course. 

The main subject of Devaney's book, iteration of functions in one real and 
complex dimension, has grown to maturity in the past decade from humble 
and largely forgotten origins. It has flowered into an object of considerable 
mathematical (and visual) beauty and subtlety. Still, the basic phenomena of 
the real theory can be explained and understood with little background beyond 
the standard fare of calculus, linear algebra, and basic complex analysis. 
Additionally, the subject is one that is easy to illustrate, and it provides a 
wonderful arena for exploration with a computer. As a potential new item in 
the undergraduate curriculum, the importance of the subject and particularly 
the style of thought deserve extended discussion. 

Iteration is a process that is frequently encountered in both the natural 
world and in artificial ones. An important example in an artificial world is to 
describe the behavior of Newton's method applied to a fixed function. If we 
believe that there are hard and fixed rules that determine the evolution of 
economies, populations, planets, or blocks sliding on inclined planes, then we 
confront the mathematical problem of making long-term predictions from our 
knowledge of how the rules operate for fixed short times. For continuous time, 
this is the problem of solving systems of ordinary differential equations. The 
usual undergraduate courses in differential equations begin with classical 
techniques for finding explicit solutions to systems of ordinary differential 
equations. The material has the flavor of "techniques of integration" in 
calculus and often is presented as a collection of tricks. One of the facts of life 
is that most differential equations do not have explicit analytic integrals, so the 
techniques one learns for solving equations explicitly are limited. Indeed, the 
presence of "chaos" in solutions is often an obstruction to the existence of 
analytic integrals. Dynamical systems theory seeks qualitative information 
about the solutions of general equations, often in a manner that looks at all of 
the phase space. This is an important problem that pervades much of science. 
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Mathematical tools that afford a new perspective on the problem deserve to be 
widely disseminated. 

Chaotic solutions of differential equations do not occur for systems of 
first-order equations in one or two variables, and visualization of trajectories in 
three or more dimensions is difficult. By discretizing time, chaos can be found 
in two-dimensional diffeomorphisms. A further reduction to allow discrete 
systems to be noninvertible yields chaotic dynamics in maps of the interval. 
Having abstracted the problem of solving differential equations to arrive at a 
map of the interval, it is reasonable to ask whether the analysis of this simpler 
problem will lead to intuition and techniques that are useful in thinking about 
realistic problems. My answer to this question is definitely yes, but the reader 
should note that I have a vested interest in the field and see the world from its 
perspective. 

What type of intuition can one develop by studying one-dimensional dy­
namics? First, one can learn very quickly that repeated application of simple 
deterministic rules can generate patterns of great complexity. This contrasts 
with the naive intuition that irregularity in a dynamical process is generated by 
the presence of noise or randomness. Second, one can learn that there are 
patterns in something that initially appears to be irregular. Much can be 
learned from a combinatorial analysis that requires few tools beyond the 
intermediate value theorem. For example, there is the striking theorem of 
Sharkovskii that gives an ordering of the positive integers 3 » 5 » 7 » • • • 
» 1 6 » 8 » 4 : » 2 » 1 with the property that if a continuous map of the 
interval has a periodic orbit of a given period, then it has periodic orbits of all 
subsequent periods. The proof of this theorem is readily accessible from the 
intermediate value theorem. Third, one can learn many of the concepts that are 
used in dynamical systems theory to describe the quaUtative properties of 
flows. The ideas of structural stability and hyperbolicity and how they are used 
to focus attention on typical phenomena can be explained. The mathematics 
here embodies a concern for describing hidden patterns in the real world that 
are ubiquitous but difficult to work with in direct quantitative calculations. 
Finally, the theory is one that is engrossing in its computational aspects. It is 
easy to write algorithms for studying systems numerically, and these algorithms 
produce surprising results and pretty pictures. Thus the subject is one that is 
an excellent choice for introducing undergraduates (and professional mathema­
ticians!) to "experimental mathematics" done with a computer. 

I have argued that dynamical systems theory is appropriate for an under­
graduate mathematics course alongside topics courses in, say, topology or 
number theory. Devaney's book is thoroughly suitable as a text for such a 
course. The book could readily serve as a text for a second semester in an 
upper division course on ordinary differential equations. It is, however, the 
first text aimed at chaotic dynamical systems for undergraduates, so I expect 
that teaching a course from the book will require close attention and supervi­
sion. One should also be aware that the subject of the text is still new and 
evolving. This carries with it a sense of excitement, but it also means that there 
is less of a feeling that the material is etched for posterity in the granite of 
mathematical truth in its current form. If the subject finds its way into the 
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curriculum of many colleges and universities, the next generation of texts may 
have a substantially different emphasis. Devaney's book is an excellent choice 
for professional mathematicians to read as an introduction to the subject. 
There are ample exercises. 

JOHN GUCKENHEIMER 
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Markov processes: Characterization and convergence, by Stewart N. Ethier and 
Thomas G. Kurtz, John Wiley & Sons, New York, Chichester, Brisbane, 
Toronto, and Singapore, 1986, x + 534 pp., $47.50. ISBN 0-471-08186-8 

The theoretical side of mathematical probability has long been preoccupied 
with limit theorems; not surprisingly, since one of the natural interpretations 
of probability is as long-run frequency. Traditionally, limit theorems have been 
divided into two categories: strong limits, where some asymptotic event is 
asserted to occur with probability one, and weak limits, where the distributions 
of a sequence of random quantities are asserted to converge to a limit 
distribution. The prototype weak limit result is the central limit theorem (CLT), 
which says that under mild conditions the sums Sn = Xl 4- • • • + Xn of inde­
pendent random variables can asymptotically be approximated by Gaussian 
distributions. This is the key result in elementary mathematical statistics. The 
average height of a random sample of people is a random quantity whose exact 
distribution is very complicated, depending on the entire Hst of heights of the 
population; but the CLT says that the distribution of the average height of a 
large sample is approximately a Gaussian distribution with two parameters 
which depend only on the mean and standard deviation of the population 
heights. This illustrates the practical purpose of weak convergence theorems, to 
approximate complicated exact finite distributions by simpler limiting distribu­
tions. A more sophisticated example concerns neutral genetic models. Much 
observed genetic variation within a species (e.g., eye color in humans) confers 
no apparent selective advantage (i.e., is apparently "neutral"). Is it plausible 
that such variation is really neutral? To study this question one needs to set up 
a mathematical model and compare its predictions with observations. In detail, 
any model will be rather arbitrary and unrealistic, but one can hope that the 
long-term behavior of a model is insensitive to its details and instead ap­
proximates some mathematically natural process with only a few parameters. 

Returning to the CLT, a pure mathematician would regard its proof as an 
easy exercise in Fourier analysis. Modern probabilists look at it differently. 
For each n, consider not only the single random variable Sn but instead the 
whole process (Sm; 0 < m < n\ which can be regarded as a random element of 
function space. Under the same conditions as the CLT these processes, suitably 
normalized, converge to the Brownian motion process (Bt; 0 < / < 1). Not 


