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The book under review, which is the outgrowth of a series of introductory 
lectures, is written on two levels. The initial portion of each chapter deals with 
the shift operator of unit multiplicity and delves quite deeply into the associ
ated function theory, paying special attention to the spectral analysis of the 
parts of the backward shift operator. This material could serve as an introduc
tion to shift-related operator theory and function theory for someone with a 
basic background in functional analysis and complex analysis. AU but a few 
chapters contain supplementary sections where the earlier material is refined 
and extended; in particular, multiple shift operators are studied. The style here 
becomes that of an advanced monograph. Besides the eleven main chapters 
there are five appendices, themselves comprising about 45 percent of the text. 
One, of 100 pages, gives an introduction to the spectral theory of two kinds of 
operators closely related to the shift operator, Hankel and Toeplitz operators; 
another, of 56 pages and contributed by S. V. HruSéev and V. V. Peller, further 
develops the theory of Hankel operators, especially the connections of those 
operators with approximation problems and with stationary Gaussian se
quences. 

This is a book for the devotee, or the would-be devotee. If my experience is 
typical, those who love the subject will love the book. 
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Nonstandard analysis is now widely applied in a number of different 
mathematical fields. A partial Hst of the appHcations includes functional 
analysis (Bernstein and Robinson [15], and the survey by Henson and Moore 
[21]), perturbation theory (Lutz and Goze [38]), mathematical physics (Arkeryd 
[9,10,11,12,13]), potential theory (Loeb [37]), mathematical economics (Brown 
and Robinson [16,17], Anderson [4,6,8], the references in [7], and the forth
coming book by Rashid [46]), and probability theory (see the survey by 
Cutland [18]). 

Standard mathematicians tend to test the worth of nonstandard analysis by 
asking whether it has led to new standard results in their fields. It is not clear 
that this is the right test: after all, most fields yield far more results of internal 
interest than applications to other fields. Nonetheless, it is a test which 
nonstandard analysis is beginning to meet. 

In most of the above areas, nonstandard analysis has led to new standard 
theorems. A metatheorem guarantees that any standard theorem provable by 
nonstandard methods has a standard proof; this is important, since it tells us 
that any theorem with a nonstandard proof follows from the usual axioms of 
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analysis. However, there is no guarantee that the standard proof will be 
reasonable: it may be very long, or exceedingly unintuitive. In most cases, the 
nonstandard proofs have been followed by standard proofs; however, in a few 
cases, nonstandard analysis still provides the only known proofs for these 
results. 

This book is one of three appearing roughly simultaneously: Stroyan and 
Bayod [52] has just appeared, and Albeverio et al. [1] is in press. What sets 
these three books apart from earlier texts in nonstandard analysis (Robinson 
[47], Stroyan and Luxemburg [51], Davis [19], and Lutz and Goze [38]) is the 
inclusion of the developments of the last decade in nonstandard formulations 
of measure theory, particularly the Loeb measure. The Loeb measure has had 
applications in several of the above areas, but has had its greatest impact in 
probability theory. For this reason, we shall concentrate particularly on 
probability theory in this survey. The reader interested in a more detailed 
survey should consult Cutland [18]. 

There are two dialects in nonstandard analysis. One (which we shall call 
NSA) has grown from Robinson's original formulation of the subject [47] and 
is the dialect which is presented by Hurd and Loeb. The second dialect, 
internal set theory (1ST), was developed later by Edward Nelson [39], with 
probability theory and mathematical physics as Nelson's main intended appli
cations. The principal advantage of internal set theory is that it is relatively 
easy to learn. In particular, the distinction between internal and external sets, 
which poses significant difficulties to the newcomer to NSA, is finessed in 1ST: 
external sets cannot be defined. As a consequence, Loeb measure (and other 
constructions such as the nonstandard hull) cannot be defined within 1ST, 
although certain paraphrases of Loeb measure arguments are possible. Thus, 
while 1ST is easier to learn than NSA, it is less flexible. Hurd and Loeb give a 
very good treatment of NSA, making the learning process as painless as 
possible. 

The basic idea of the Loeb measure construction [36] is easy to describe. 
Suppose Œ is an internal *-finite set, i.e. an infinite set constructed in a 
nonstandard model which satisfies all the formal properties of finite sets. We 
suppose v is normalized counting measure on fl, i.e. v(A) = |>4|/|B| for all 
(internal) A c Î2. Any finite element r of the nonstandard real numbers is 
infinitely close to a unique standard real number, denoted °r. v(A) is a 
nonstandard real number between 0 and 1, and hence is finite. Let n(A) = 
°v(A). Thus, /A is a finitely additive measure in the ordinary standard sense; its 
domain J / , the class of all internal subsets of £2, is an algebra. One can 
construct nonstandard models with the following saturation property: ii An is 
a sequence of internal sets and C\nAn = 0 , then there is a finite collection 
{nl9...9nk} such that Ç\tAn = 0 . Thus, the countable additivity hypothesis 
of the Carathéodory extension theorem is trivially satisfied. Accordingly, there 
is a unique extension of /x to a countably additive measure on the a-algebra 
generated by s/. The completion of this extension, denoted v, is called the 
Loeb measure generated by v. It should be emphasized that, although v is 
obtained from a nonstandard construction, it is a countably additive probabil
ity measure in the usual standard sense. Loeb originally developed this 
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construction in the course of constructing a new standard ideal boundary for 
potential theory [37]. 

The Loeb measure construction is very simple, but it has had profound 
consequences. (£2, v) behaves just like an ordinary discrete set with a counting 
measure: integration is just summation. On the other hand, (£2, v) is a 
probabihty space in the usual standard sense. A series of so-called lifting 
theorems (beginning with Loeb [36] and continuing in Anderson [2] and 
Keisler [28]) link the theories of integration and stochastic processes on the two 
spaces, providing a foundation for probabihty theory that simultaneously 
combines the features of discrete and continuous entities. The simplest exam
ple is Lebesgue measure. We take n to be an infinite element of the nonstan
dard natural numbers, and let ti = (0, l / « , . . . , ( « - 1)/«,1}. Ü is * -finite. 
We let A:0 -> [0,1] be defined by h(x) = °JC. A set B c [0,1] is Lebesgue 
measurable iff h~l(B) is immeasurable, in which case v{h~\B)) is the Le
besgue measure of B (Anderson [2,5]; the " i f part is due to Henson and 
Fisher). 

A similar construction works for Brownian motion. Let Ü = (1,-1}W, where 
n is an infinite natural number. We can define a random walk by setting 

j [nt] 

For each t e [0,1], define /?(/, <o) = °x(f, <o). Then /} is a standard Brownian 
motion on the probabihty space (Q, v) (Anderson [2]). Wiener measure and 
Donsker's invariance principle on the convergence of random walks to Wiener 
measure fall out immediately. 

Lawler [32] used the relationship of the random walk x to Brownian motion 
to study self-avoiding random walks, which are of interest in polymer chem
istry and theoretical physics. His proofs are carried out in 1ST, so the following 
description is a restatement of his argument in NSA. Dvoretzky, Erdös, and 
Kakutani [20] showed that, if /? is a Brownian motion in Rk with k > 4, then 
almost every path of /? has no intersection with itself. Since °x (more precisely, 
its /c-dimensional analogue) is a Brownian motion, almost every path has the 
property that all self-intersections are of infinitesimal length. Consequently, if 
one lets y be the process obtained by erasing the loops in x, then the paths of 
°y are exactly the same as those of the original Brownian motion /?, except 
that the process is speeded up. Lawler shows in [32] that, for k > 5, the 
speeding-up is by a finite factor which is uniform over time and paths. He has 
subsequently shown that, for k = 4, the speeding-up is by an infinite factor 
(involving logw), uniform over paths. It is an immediate corollary that the 
distribution of a standard loop-erased random walk, speeded up appropriately, 
converges weakly to standard Brownian motion for k > 4 as n -> oo. This is a 
new standard result, obtained first by nonstandard methods. 

Stoll [50] has recently obtained results on a different formulation of self-
avoiding random walks in R2. He considers the analogue of x in two 
dimensions, but uses an internal probabihty measure v' in which the probabil
ity of a path is decreased according to a potential function whenever the path 
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comes close to intersecting itself; a special case of such a potential is one in 
which the probability of each path is proportional to e~cn, where n is the 
number of self-intersections. He is able to characterize the distribution of °x; 
in particular, it is absolutely continuous with respect to Wiener measure. As 
usual, a weak convergence result on finite random walks follows immediately; 
this result substantially generalizes the potentials that had been allowed in the 
previous standard literature. 

Levy Brownian motion is a generalization of the usual Brownian motion in 
which the time parameter / is taken in R .̂ Stoll [49] generalizes the above 
construction of Brownian motion to a construction of Levy Brownian motion. 
As a consequence, he obtains a new standard invariance principle on the 
convergence of stochastic processes with time parameter defined on a lattice to 
Levy Brownian motion as the lattice becomes finer. 

The local time of a Brownian path P( •, to) is 

d ft 
/(/,JC,CO) = — ƒ l(fi(s,o)) < x)dx, 

dx JQ 

where / is the indicator function. In a series of papers, Perkins has given a 
nonstandard construction of, and proven several new standard theorems on, 
local time. The nonstandard construction simply counts the number of times 
the random walk x visits each possible lattice point, and normalizes ap
propriately [40]. A new standard invariance principle falls out immediately 
[42]. Perkins [40] also establishes the first standard characterizations of /(7, JC, to) 
which are intrinsic (i.e., depend only on [s < t: P(s, to) = x}) and global (i.e., 
there is a single null set Î20 so that the characterization works on the 
complement of £2°, uniformly in x). The key to obtaining a global characteri
zation is the fact that one can compare the internal measures of internal sets of 
Loeb measure zero, and hence it is possible to show in some situations that the 
measure of an uncountable union of null sets is a null set. An exact characteri
zation of the Hausdorff measure of the level sets of Brownian motion follows 
by standard arguments (Perkins [41]). 

The stochastic integral with respect to a Brownian motion is motivated by 
the definition of a Stieltjes integral. The barrier to directly defining it as a 
Stieltjes integral is that the paths of a Brownian motion are almost surely not 
of bounded variation. However, the paths of the random walk x have 
well-defined nonstandard variation yfn . Hence, if g: *[0,1] X fi -> *R is inter
nal (where *R denotes the nonstandard real numbers and *[0,1] those ele
ments of *R between 0 and 1), the Stieltjes integral ƒ gdx is perfectly well 
defined; in fact, it is obtained as a *-finite summation. Anderson [2] shows 
that, if ƒ : [0,1] X £2 -> R is Itô integrable with respect to /?, then there is a 
lifting g: *[0,1] X Ü -+*R such that °jgdx is the Itô integral f f dp. This 
opens up the possibility of solving stochastic differential equations (with 
respect to Brownian motion as well as other stochastic processes) by solving a 
nonstandard stochastic difference equation. The existence of a solution to the 
difference equation is trivial; one then needs to show that the standard part of 
the solution to the difference equation solves the differential equation. This 
approach has been exploited extensively in Keisler's monograph [28]. Keisler 
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obtains existence theorems for solutions of a more general class of stochastic 
differential equations: see in particular Theorem 5.14 of [28]. In addition, while 
standard approaches yield weak solutions (i.e., solutions which live on a larger 
probability space), Keisler shows that stochastic differential equations on Loeb 
spaces have strong solutions, living on the same Loeb space. He also gives 
theorems showing that stochastic processes with the same distributions which 
live on Loeb spaces can be mapped onto each other. 

It is possible to give discrete nonstandard representations to more general 
stochastic processes, in particular semimartingales. Then Keisler's techniques 
can be used to study stochastic differential equations with respect to these 
more general processes (Hoover and Perkins [23, 24] and Lindstrom [33, 34, 
35]). Their existence theorem, which extended the previously known standard 
results, was completed at the same time as a standard proof by Jacod and 
Memin [25]; as in Keisler [28], the nonstandard approach yields strong 
solutions, while Jacod and Memin obtained weak solutions. 

It had been known for some time that every nonnegative submartingale was 
equal in distribution to the absolute value of a martingale. Perkins [43] used 
the machinery in [23] to extend this to local submartingales and give an explicit 
formula for the local martingale that results in terms of the Doob-Meyer 
decomposition of the original local submartingale. 

Perkins [45] has also obtained new results on Dawson's measure-valued 
diffusions. Specifically, he obtains more precise information on the Hausdorff 
dimension. 

Since Loeb measures have also played an important role in the applications 
to mathematical economics, we shall give a very brief hint of the nature of a 
few of those applications. Aumann [14] introduced into mathematical econom
ics the use of nonatomic measure spaces as models for the set of agents in 
"large" economies, in much the same way as measure spaces are used to model 
large discrete systems in mathematical physics. Aumann showed the equiva
lence, in his model, of two notions of equilibrium: Walrasian equilibrium (i.e., 
an equilibrium notion mediated by prices in which supply equals demand) and 
the core, an equilibrium notion arising from game theory which focuses on the 
ability of coalitions of agents to exploit market power. There ensued an 
extensive literature, involving many authors, deriving asymptotic results on the 
relationship of core and Walrasian equilibrium in large finite economies using 
Aumann's result and the theory of weak convergence of probability measures 
(in particular, Skorokhod's Theorem); for an account of this work, see 
Hildenbrand's book [22]. Brown and Robinson [17] introduced nonstandard 
exchange economies (i.e., economies in which there is a "-finite set of agents) 
and showed that the appropriate notions of core and Walrasian equilibrium 
coincided. Their work was done before the discovery of the Loeb measure; in 
hindsight, we see that the equilibrium notions used in Brown and Robinson 
[17] are essentially the Hftings of Aumann's equilibrium notions on the Loeb 
measure economies generated by the *-finite economies. The advantage of the 
nonstandard approach is apparent in Brown and Robinson [16]; asymptotic 
theorems for large finite economies follow almost immediately from Brown 
and Robinson [17] by the transfer principle. Thus, nonstandard analysis 
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obtained results comparable to those obtained by the measure-theoretic 
approach more or less simultaneously and with much less work; see Anderson 
[7] for a comparison of the results obtained by the two approaches. A 
translation process applied to the nonstandard proofs led to short, completely 
elementary (i.e. using neither measure theory nor nonstandard analysis) con
vergence proofs (Anderson [3, 4]). 

There are two nonstandard economics results for which no tractable stan
dard proof is yet known. An agent is said to have a convex preference if, given 
any possible consumption x, the set of consumptions the agent prefers is a 
convex set. The sense in which the core converges to the set of Walrasian 
equilibrium is stronger in general when preferences are convex than when they 
are not. However, Anderson [6] shows that, even if preferences are nonconvex, 
convergence holds in the strong sense with probability one. One can give a 
standard proof of this result in the important special case in which the limit 
economy of the sequence has a finite or countable number of Walrasian 
equilibrium prices, but no standard proof is known in the general case. A 
related result concerns Pareto optima (i.e., allocations of resources with the 
property that there is no reallocation of resources which makps every agent 
better off). A fundamental theorem of economics is that, with convex pref
erences, every Pareto optimum is a Walrasian equilibrium after redistribution 
of income. Anderson [8] shows that, even with nonconvex preferences, with 
probability one, every Pareto optimum is near a Walrasian equilibrium after 
redistribution of income. No tractable standard proof is known, even for a 
special case. As in Perkins [40], the key to the proofs of [6, 8] is the fact that 
one can compare the internal measures of internal sets of Loeb measure zero, 
and hence it is possible to show in some situations that the measure of an 
uncountable union of null sets is a null set. 

We now turn to a discussion of the book itself. The content and style suggest 
that the authors' goal was to write the nonstandard version of Royden's Real 
analysis [48]. The emphasis is on giving a comprehensive treatment of the 
mathematical tools used in the nonstandard approach to real analysis, which 
are common to the applications in probability theory and other areas. The 
book evolved from graduate courses given by Loeb at the University of Illinois. 
The treatment is accessible to students with an undergraduate background in 
real analysis; indeed, we suspect that it could be read by undergraduates who 
were ready for a Royden-level course. There are many good problems 
throughout. 

The prerequisites from mathematical logic are developed in the first two 
chapters. Nonstandard models are produced via the ultraproduct construction. 
The most important idea in NSA is the transfer principle, which asserts that 
sentences are true in the standard world if and only if they are true, properly 
interpreted, in the corresponding nonstandard world. Specifying the proper 
interpretation requires an understanding of the distinction between internal 
objects (those higher-order objects that lie in the ultraproduct) and external 
objects (subsets of internal objects). Mastering this distinction is the chief 
hurdle faced by the novice learning NSA. By finessing it, Nelson makes 1ST 
easier to learn than NSA, but precludes the development of Loeb measure. 
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Chapter I begins with a construction of the nonstandard real numbers as an 
ultraproduct. A very restricted class of first-order sentences, called simple 
sentences, is then defined. Hurd and Loeb make the transfer principle accessi
ble by first stating and proving it only for simple sentences, where few 
difficulties arise. They then devote the rest of Chapter I to developing basic 
properties of the reals (limits, continuity, compactness, and the like) in terms 
of simple sentences. The advantage of this organization is that it defers most of 
the technical problems until the reader has had the opportunity to develop 
intuition, and to realize what the machinery is good for. This approach was 
inspired by Keisler's nonstandard calculus text and instructors' manual [26, 
27]. 

Fortified by Chapter I, the reader is equipped to plunge into the full 
development of the transfer principle and other notions such as saturation in 
Chapter II. This is difficult material for the nonlogician, but less difficult than 
most mathematicians probably believe. The treatment given here is quite lucid 
and, at 39 pages, surprisingly short. In technical terms, the models used 
(denumerably comprehensive enlargements) are not as nice as the /c-saturated 
enlargements used in Stroyan and Bayod [52], whose construction requires an 
extra step; we think the extra step is worth taking, even if it lengthens the 
exposition somewhat. 

Chapter III presents the nonstandard theory of topological and metric 
spaces. One of the nicest aspects of the nonstandard theory is its treatment of 
compactifications. Nonstandard models are in a certain sense universal com-
pactifications with respect to all properties. All the usual standard compactifi
cations (and some new ones—Loeb [37]) can be obtained by factoring in an 
appropriate way. 

Chapter IV is the heart of the book, presenting a comprehensive treatment 
of the nonstandard measure theory, based on the Loeb measure. Until now, 
this material has only been available in research articles. The authors follow a 
Daniel-style approach, rather than the Carathéodory-style approach in Loeb's 
original paper [36]. Most mathematicians seem passionately committed to 
whichever approach to measure theory they first used (or first understood), so 
some will see this as an improvement, while others would prefer the 
Carathéodory approach. The last fourteen pages of the chapter give the first 
hints of the applications to stochastic processes. 

For anyone wanting to learn nonstandard analysis, particularly for applica
tions in probability theory, this is an excellent book. A very good one-semester 
graduate course could be based on this book, supplemented by applications of 
the instructor's choice. 

The other two recent books on nonstandard analysis are also of interest. 
Stroyan and Bayod's Foundations of infinitesimal stochastic analysis [52] is a 
thorough compilation of nonstandard measure-theoretic results selected with 
an eye to applications in probability theory. It thus covers a great deal of 
material that is beyond the scope of the Hurd and Loeb book. It contains a 
quick introduction to nonstandard analysis, but does not try to ease the novice 
into the subject in the same way as Hurd and Loeb do. It also does not try to 
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describe the applications in probability theory, concentrating (as its title 
suggests) on underlying machinery. It is probably of greatest value as a 
reference book, because of its thorough coverage of that machinery. Albeverio, 
Fenstad, Hoegh-Krohn, and Lindstrom's Nonstandard methods in stochastic 
analysis and mathematical physics, which has not yet appeared, is the only one 
of these three books that gives an extensive treatment of applications to 
probability theory and mathematical physics. It provides the best indication of 
what nonstandard analysis is capable of doing in these areas. 
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