GENERALIZED EXPONENTS VIA HALL-LITTLEWOOD SYMMETRIC FUNCTIONS

R. K. GUPTA

The generalized exponents of finite-dimensional irreducible representations of a compact Lie group are important invariants first constructed and studied by Kostant in the early 1960s. Their actual computation has remained quite enigmatic. What was known ($[\mathbf{K}]$ and $[\mathbf{H s}$, Theorem 1]) suggested to us that their computation lies at the heart of a rich combinatorially flavored theory.

This note announces several results all tied together by Theorem 2.3 below, which selects the natural generalizations of the Hall-Littlewood symmetric functions, rather than the irreducible characters, as the best basis of the character ring. Full details will appear elsewhere.

1. Statement of problem. Let \mathfrak{g} be a complex semisimple Lie algebra with adjoint group G. Via the adjoint action, the symmetric algebra $S(\mathfrak{g})$ becomes a graded representation of G. Kostant studied this representation in his fundamental paper [\mathbf{K}]; his results are well known. $S(\mathfrak{g})=I \otimes H$ is a free module over the G-invariants I generated by the harmonics H. Moreover, I is a polynomial ring on homogeneous generators of known degrees, and $H=\bigoplus_{p \geq 0} H^{p}$ is a graded, locally finite \mathfrak{g}-representation.

Hence, to study the isotypic decomposition of $S(\mathfrak{g})$, one forms for each irreducible G-representation V the polynomial in an indeterminate q :

$$
\begin{equation*}
F(V):=\sum_{p \geq 0}\left\langle V, H^{p}\right\rangle q^{p} \tag{1.1}
\end{equation*}
$$

Here \langle,$\rangle is the usual form \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}($,$) on the representation ring of \mathfrak{g}$. Kostant's problem asks us to determine $F(V)$; he called the integers e_{1}, \ldots, e_{s} with $F(V)=\sum_{i=1}^{s} q^{e_{i}}$ the generalized exponents of V.

The polynomial $F(V)$ turns out to be a rather deep invariant of the representation V. For instance, the $F(V)$ are certain Kazhdan-Lusztig polynomials for the affine Weyl group (combine [Hs, Theorem 1] and [Ka, Theorem 1.8]), and they describe a certain group cohomology [FP, Theorem 6.1]).
2. A bilinear form. Our idea is to interpret F as a bilinear form on the character ring Λ of \mathfrak{g}. Precisely, define a $\mathbf{Z}[q]$-valued symmetric bilinear form $\langle\langle\rangle$,$\rangle on \Lambda[q]$ by setting

$$
\begin{equation*}
\left\langle\left\langle\operatorname{ch}\left(V_{1}\right), \operatorname{ch}\left(V_{2}\right)\right\rangle\right\rangle:=F\left(V_{1} \otimes V_{2}^{*}\right), \tag{2.1}
\end{equation*}
$$

[^0]for any two \mathfrak{g}-representations V_{1} and V_{2}, and extending q-bilinearly. (Here $\operatorname{ch}(V)$ and V^{*} mean the character and dual of V.) Our (2.1) makes sense as (1.1) actually defines F on any representation of \mathfrak{g}.

We will present a basis in which our new form $\langle\langle\rangle$,$\rangle diagonalizes. First$ fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} and some familiar associated objects. Let Φ be the root system with Φ^{+}a choice of positive roots. Form the lattice P of integral weights and its subset \mathcal{P}^{++}of dominant ones. Let W be the Weyl group with length function l. Set

$$
t_{\pi}(q):=\sum_{\substack{w \in W \\ w \cdot \pi=\pi}} q^{l(w)}, \quad \text { for } \pi \in \mathcal{P}
$$

Use exponential notation for characters.
Define, for $\lambda \in P^{++}$, the Hall-Littlewood characters

$$
\begin{equation*}
P_{\lambda}:=t_{\lambda}(q)^{-1} \sum_{w \in W} w\left(e^{\lambda} \prod_{\varphi>0} \frac{1-q e^{-\varphi}}{1-e^{-\varphi}}\right) \tag{2.2}
\end{equation*}
$$

These characters are the classical Hall-Littlewood symmetric functions (see [M, III]) when $\mathfrak{g}=\mathfrak{s l}_{n}$; they appear in this more general context in work of Kato [Ka].

THEOREM 2.3. The $P_{\lambda}, \lambda \in \mathcal{P}^{++}$, form an orthogonal $\mathbf{Z}[q]$-basis of $\Lambda[q]$ with respect to the form $\langle\langle\rangle$,\rangle , and

$$
\left\langle\left\langle P_{\lambda}, P_{\lambda}\right\rangle\right\rangle=t_{0}(q) / t_{\lambda}(q)
$$

We prove this by comparing $\langle\langle\rangle$,$\rangle to \langle$,$\rangle via the expansion \sum_{p \geq 0} \operatorname{ch}\left(H^{p}\right) q^{p}$ $=t_{0}(q) \prod_{\varphi}\left(1-q e^{\varphi}\right)^{-1}$, as we know $[\mathbf{G 1}$, Theorem 2.5] the basis of $\Lambda[[q]]$ dual to $\left\{P_{\lambda}\right\}_{\lambda \in \mathcal{P}++}$ with respect to \langle,$\rangle .$

Kato [Ka] expressed the irreducible characters $\chi_{\pi}=\operatorname{ch}\left(V_{\pi}\right), V_{\pi}$ the \mathfrak{g}-representation of highest weight $\pi \in \mathcal{P}^{++}$, in terms of the $P_{\lambda}: \chi_{\pi}=$ $\sum_{\lambda \in \mathcal{P}++} m_{\pi}^{\lambda}(q) P_{\lambda}$. The polynomials $m_{\pi}^{\lambda}(q)$ are Lusztig's q-analogs of λ weight multiplicity in $V_{\pi}[\mathbf{L}]$; they satisfy $m_{\pi}^{\lambda}(1)=\operatorname{dim}\left(V_{\pi}^{\lambda}\right)$. We get

Corollary 2.4. For $\alpha, \beta \in \mathcal{P}^{++}$,

$$
F\left(V_{\alpha} \otimes V_{\beta}^{*}\right)=\left\langle\left\langle\chi_{\alpha}, \chi_{\beta}\right\rangle\right\rangle=\sum_{\theta \in \mathcal{P}++} m_{\alpha}^{\theta}(q) m_{\beta}^{\theta}(q) t_{0}(q) / t_{\theta}(q)
$$

As Kostant $[\mathbf{K}]$ proved $\left.F(V)\right|_{q=1}=\operatorname{dim}\left(V^{0}\right)$ for all V, our formula is a " q-analog" of the fact

$$
\left.F\left(V_{\alpha} \otimes V_{\beta}^{*}\right)\right|_{q=1}=\sum_{\theta \in \mathcal{P}++} \operatorname{dim}\left(V_{\alpha}^{\theta}\right) \operatorname{dim}\left(V_{\beta}^{\theta}\right) \#(W \cdot \theta)
$$

3. Combinatorics of mixed-tensor SL_{n}-representations. We set $\mathfrak{g}=$ $\mathfrak{s l}_{n}$ to illustrate the effective use of $\S 2$ in evaluating F on irreducibles.

We have formulated a stability theory (1981) for the generalized exponents based on a "mixed-tensor" parameterization $V_{\alpha, \beta}^{[n]}$ of the irreducible PGL_{n} representations, using certain pairs α, β of partitions. First we discuss combinatorics of SL_{n}-representations.

The Weyl group of SL_{n} is the symmetric group $S_{n} ; \Lambda$ is the ring of symmetric functions in $x_{i}=\exp \left(t_{i}\right), 1 \leq i \leq n$, for t_{i} the coordinates on diagonal matrices in $\mathfrak{s l}_{n}$. ${ }^{+++}$identifies with the set of partitions of less than n rows via $\sum_{i=1}^{n-1} c_{i} t_{i} \leftrightarrow\left(c_{1}, \ldots, c_{n-1}\right)$. (Note $t_{1}+\cdots+t_{n}=0$.) Then, $\chi_{\lambda}=s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$, the classical Schur function, and $P_{\lambda}=P_{\lambda}\left(x_{1}, \ldots, x_{n} ; q\right)$. See [M, I(3), III(2.6)] for the combinatorial theory.

Write partitions γ as nonincreasing sequences $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots\right)$, ignoring trailing zeroes, with length $l(\gamma)=\#\left\{i \mid \gamma_{i} \neq 0\right\}$ and magnitude $|\gamma|=\gamma_{1}+$ $\gamma_{2}+\cdots=\operatorname{degree}\left(s_{\gamma}\right)$. Also write $V_{\gamma}^{[n]}$, rather than V_{γ}.

Then $m_{\lambda}^{\mu}(q)=0$ unless $|\lambda|-|\mu|=k n$, some k, in which case $m_{\lambda}^{\mu}(q)=$ $K_{\lambda, \pi}(q)$, the Kostka-Foulkes polynomial attached to Young tableaux of shape λ and weight $\pi=\mu+\left(k^{n}\right)$, by [M, III, 6, Example 3].

Given partitions α and β with $l(\alpha)+l(\beta) \leq n$, we defined $V_{\alpha, \beta}^{[n]}$ as the Cartan piece in $V_{\alpha}^{[n]} \otimes\left(V_{\beta}^{[n]}\right)^{*}$, i.e., the irreducible $\mathfrak{s l}_{n}$-component generated by the tensor product of the highest weight vectors in each factor. It follows that $V_{\alpha, \beta}^{[n]}=V_{\gamma}^{[n]}$ for γ the componentwise sum (put $s=l(\alpha), t=l(\beta)$):

$$
\gamma=\operatorname{prt}_{n}(\alpha, \beta):=(\alpha_{1}, \ldots, \alpha_{s}, \underbrace{0, \ldots, 0}_{n-s-t},-\beta_{t}, \ldots, \beta_{1})+(\underbrace{\beta_{1}, \ldots, \beta_{1}}_{n}) .
$$

For example, $\mathbf{C}=V_{(0),(0)}^{[n]}$, and $\mathfrak{g}=V_{(1),(1)}^{[n]}$.
Lemma 3.1. Fix $n \geq$ 1. Then the $V_{\alpha, \beta}^{[n]}$, where α and β satisfy $l(\alpha)+$ $l(\beta) \leq n$ and $|\alpha|=|\beta|$, form an exhaustive, repetition-free list of the irreducible finite-dimensional representations of PGL_{n}.
4. Stability for PGL_{n} harmonics. Stability was our original reason for foming the $V_{\alpha, \beta}^{[n]}$. Write H_{n}^{p} for the degree p harmonics.

THEOREM 4.1. Fix $p \geq 0$. Then the number of irreducible PGL_{n}-components of H_{n}^{p} is constant for $n \geq 2 p$. Moreover, the decomposition stabilizes: $V_{\alpha, \beta}^{[n]}$ occurs in H_{n}^{p} only when $r=|\alpha|=|\beta| \leq p$, and $\left\langle V_{\alpha, \beta}^{[n]}, H_{n}^{p}\right\rangle$ stabilizes for $n \geq p+r$. Thus, for some finite set J^{p} of partition pairs of common magnitude and some integers $c_{\alpha, \beta}^{p}$,

$$
H_{n}^{p} \simeq \bigoplus_{(\alpha, \beta) \in J^{p}} c_{\alpha, \beta}^{p} V_{\alpha, \beta}^{[n]}, \quad \text { for } n \geq 2 p
$$

Our original proof worked by a combinatorial analysis of the pieces in $S\left(\right.$ End \mathbf{C}^{n}) using the Cauchy and Littlewood-Richardson rules. We, R. Stanley, and P. Hanlon then studied the stable series $\lim _{n \rightarrow \infty} F\left(V_{\alpha, \beta}^{[n]}\right)$. See $[\mathbf{S}$, Hn, and G2].

The key question raised by 4.1 is the determination of the $F\left(V_{\alpha, \beta}^{[n]}\right)$ as functions of two variables q and n (with $n \geq l(\alpha)+l(\beta)$ always implicit).

For each value of $n, F\left(V_{\alpha, \beta}^{[n]}\right) \in \mathbf{Z}[q]$ is controlled by the partitions $\lambda=$ $\operatorname{prt}_{n}(\alpha, \beta)$ and $\mu=\left(\beta_{1}^{n}\right)$ of magnitude $n \beta_{1}$. Precisely, $F\left(V_{\alpha, \boldsymbol{\beta}}^{[n]}\right)=K_{\lambda, \mu}(q)$ (this follows by combining [Hs, Theorem 1] with [M, III, 6, Example 3]).

However, in $\S 5$ we prove that $F\left(V_{\alpha, \beta}^{[n]}\right)$ as a function of q and n is really "controlled" just by α and β (symmetrically, as $F\left(V_{\alpha, \beta}^{[n]}\right)=F\left(V_{\beta, \alpha}^{[n]}\right)$). Given a partition α, let $h_{1}(\alpha), \ldots, h_{r}(\alpha)$ be its hook numbers and $\tilde{\alpha}$ its conjugate partition (see $[\mathbf{M}, \mathrm{I}, 1]$). Set $e(\alpha):=\sum_{i \geq 1} i \alpha_{i}$. Previously, we knew only

PROPOSITION 4.2. Assume $|\alpha|=r$.
(i) If $\beta=\left(1^{r}\right)$, then

$$
F\left(V_{\alpha, \beta}^{[n]}\right)=q^{e(\tilde{\alpha})} \prod_{i=1}^{r}\left(1-q^{n-r-\tilde{\alpha}_{i}+i}\right) /\left(1-q^{h_{i}(\alpha)}\right)
$$

(ii) If $\beta=(r)$, then $F\left(V_{\alpha, \beta}^{[n]}\right)=s_{\alpha}\left(q, \ldots, q^{n-1}\right)$.
5. A formula for $F\left(V_{\alpha, \beta}^{[n]}\right)$. Let us extend the $K_{\lambda, \mu}(q)$ to skew-partitions α / π (cf. [M, I, 1.5]). Although the latter are not partitions, they behave as such. The skew-Schur function is defined by $s_{\alpha / \pi}=\sum_{\gamma}\left\langle s_{\pi} s_{\gamma}, s_{\alpha}\right\rangle s_{\gamma}$. Now define $K_{\alpha / \pi, \theta}(q)$ as the coefficient of P_{θ} in $s_{\alpha / \pi}$. Set

$$
b_{\theta}(q):=\prod_{i \geq 1}(1-q) \cdots\left(1-q^{m_{i}}\right), \quad \text { for } \theta=\left(i^{m_{i}}\right) ; \quad b_{(0)}:=1
$$

Theorem 5.1. Fix α and β with $|\alpha|=|\beta|=r$. Then

$$
F\left(V_{\alpha, \beta}^{[n]}\right)=\sum_{\substack{\pi, \theta \\|\pi|+|\theta|=r .}}(-1)^{|\pi|} K_{\alpha / \pi, \theta}(q) K_{\beta / \tilde{\pi}, \theta}(q) \frac{\left(1-q^{n}\right) \cdots\left(1-q^{n-l(\theta)+1}\right)}{b_{\theta}(q)}
$$

To prove this, we express $V_{\alpha, \beta}^{[n]}$ in terms of the $V_{\gamma}^{[n]} \otimes\left(V_{\delta}^{[n]}\right)^{*}$ using essentially a formula of Littlewood, and then apply 2.4.

Theorem 5.1 leads to new, unified proofs of several old results, among them 4.1, 4.2, and the stable theorem [$\mathbf{S}, 8.1$] proved by Stanley. But mainly, 5.1 gives the first real means for computing the $F\left(V_{\alpha, \beta}^{[n]}\right)$.

Corollary 5.2. For some polynomial $g^{\alpha, \beta}(q, z)$ over \mathbf{Z},

$$
F\left(V_{\alpha, \beta}^{[n]}\right)=\frac{g^{\alpha, \beta}\left(q, q^{n-r+1}\right)}{(1-q) \cdots\left(1-q^{r}\right)}
$$

Moreover,

$$
\frac{g^{\alpha, \beta}(q, z)}{(1-q) \cdots\left(1-q^{r}\right)}=\sum_{i=0}^{r} c_{i}(q) \frac{\left(1-q^{r-1} z\right) \cdots\left(1-q^{r-i} z\right)}{(1-q) \cdots\left(1-q^{i}\right)}
$$

for some $c_{i}(q) \in \mathbf{Z}[q]$.
We have some conjectures on the form of the $g^{\alpha, \beta}(q, z)$. The examples below, done by hand, are new; the first is an old conjecture. Define

$$
\left[\begin{array}{lll}
c_{1} & \cdots & c_{r} \\
d_{1} & \cdots & d_{r}
\end{array}\right]_{q}:=\frac{\left(1-q^{c_{1}}\right) \cdots\left(1-q^{c_{r}}\right)}{\left(1-q^{d_{1}}\right) \cdots\left(1-q^{d_{r}}\right)}, \quad \text { for } c_{i}, d_{i} \in \mathbf{Z}^{+}
$$

We refrain from thinking about these unless they are polynomials in q.

Example 5.3. If $\alpha=\beta=(2,1)$, then 5.1 yields

$$
F\left(V_{\alpha, \beta}^{[n]}\right)=q^{3}\left[\begin{array}{ccc}
n+1 & n-1 & n-3 \\
1 & 1 & 3
\end{array}\right]_{q}+q^{5}\left[\begin{array}{ccc}
n-1 & n-2 & n-3 \\
1 & 1 & 3
\end{array}\right]_{q}
$$

Example 5.4. Let us find $F\left(V_{\gamma}^{[6]}\right)$ when $\gamma=(6,4,1,1)$. Then $\gamma=$ $\operatorname{prt}_{6}(\alpha, \beta)$, for $\alpha=(4,2)$ and $\beta=(2,2,1,1) .5 .1$ gives

$$
\begin{aligned}
F\left(V_{\alpha, \beta}^{[n]}\right)= & q^{9}\left[\begin{array}{cccccc}
n+2 & n+1 & n-1 & n-2 & n-4 & n-5 \\
1 & 1 & 2 & 2 & 4 & 5
\end{array}\right]_{q} \\
& +q^{12}\left[\begin{array}{cccccc}
n+2 & n-1 & n-2 & n-3 & n-4 & n-5 \\
1 & 1 & 2 & 2 & 4 & 5
\end{array}\right]_{q} \\
& +q^{15}\left[\begin{array}{cccccc}
n-1 & n-2 & n-2 & n-3 & n-4 & n-5 \\
1 & 1 & 2 & 2 & 4 & 5
\end{array}\right]_{q} \\
& +\left(q^{9}+q^{10}+q^{11}\right)\left[\begin{array}{cccccc}
n & n-1 & n-2 & n-3 & n-4 & n-5 \\
1 & 1 & 2 & 2 & 2 & 5
\end{array}\right]_{q}
\end{aligned}
$$

So, at $n=6, F\left(V_{\pi}^{[6]}\right)=2 q^{9}+3 q^{10}+7 q^{11}+9 q^{12}+13 q^{13}+13 q^{14}+15 q^{15}+$ $12 q^{16}+11 q^{17}+7 q^{18}+5 q^{19}+2 q^{20}+q^{21}$.

Acknowledgment. I warmly thank University of Paris VI, I.H.E.S., and Max-Planck-Institut for their hospitality.

References

[FP] E. M. Friedlander and B. J. Parshall, On the cohomology of algebraic and related finite groups, Invent. Math. 74 (1983), 85-117.
[G1] R. K. Gupta, Characters and the q-analog of weight multiplicity, I.H.E.S. preprint M/86/6 (submitted for publication).
[G2] R. K. Gupta, Stability of polynomial powers of $\mathfrak{g l} \mathrm{l}_{n}$ (in preparation).
[Hn] P. Hanlon, On the decomposition of the tensor algebra of the classical Lie algebras, Adv. in Math. 56 (1985), 238-282.
[Hs] W. H. Hesselink, Characters of the nullcone, Math. Ann. 252 (1980), 179-182.
[Ka] S. Kato, Spherical functions and a q-analogue of Kostant's weight multiplicity formula, Invent. Math. 66 (1982), 461-468.
[K] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404.
[L] G. Lusztig, Singularities, character formulas, and a q-analog of weight multiplicities, Analyse et Topologie sur les Espaces Singuliers (II-III), Astérisque 101-102 (1983), 208-227.
[M] I. G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979.
[S] R. Stanley, The stable behavior of some characters of $\operatorname{SL}(n, C)$, Linear and Multilinear Algebra 16 (1984), 3-27.

Department of Mathematics, Brown University, Providence, Rhode ISLAND 02912

[^0]: Received by the editors July 28, 1986 and, in revised form, December 10, 1986.
 1980 Mathematics Subject Classification (1985 Revision). Primary 22E46, 17B10, 05A15; Secondary 05A17.

 Research supported by a NATO Postdoctoral Fellowship.

