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BRAIDS, HYPERGEOMETRIC FUNCTIONS, AND LATTICES 

G. D. MOSTOW 

1. Braids. Let Ll9 L2 be two parallel lines in the plane y = 0 of (x, y, z) 
space, Lx at z = rx and L2 at z — r2. Let P/ = (/,0, rx), Ô,-= 0\0, r2), 

A braided n-path is a set of « paths ct(t) in R3 (i = 1 , . . . , n) satisfying 
(1) c,(0 = (*,(>), MO, 0> ' i < * < r2, c ^ ) = P„ C/(r2) e { & , . . ,Ô„}-
(2) The paths do not intersect. 

Two braided «-paths are regarded as equivalent if and only if it is possible to 
deform the one configuration into the other respecting conditions (1) and (2) 
throughout the deformation; note that one does permit rv r2 to vary so long as 
rx < r2 is respected. Thus (a) and (b) in Figure 1 represent the same braid. By 
definition, a braid is an equivalence class of braided «-paths. 

(a) (b) o2o3
 la2ol

 lo2a1 

FIGURE 1. 

Two braids A and B can be multiplied: B • A is the braid obtained by first 
braiding A then B, and adjusting the domain of the parameter t so that it 
changes without interruption, i.e., by bringing the end line of A and initial Une 
of B together and then erasing them. 
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(a) 

A — identity 

i + 1 

i + 1 

FIGURE 2 

Multiplication of braids is associative. The braid in which no paths inter­
twine (Figure 2(a)) is the identity braid. The inverse of a braid A with path cA 

is defined by its mirror image (Figure 2(b)), i.e., in the inverse of A, cf~(t) = 
cf(~~0> ~~ri < t ^ "~ri- Thus, under multiplication, the braids form a group. 
We denote by ot the braid which joins i to / + 1 (Figure 2(c)) by a path 
passing under the path joining i + 1 to i. Then {ax , . . . ,aw_1} generate the 
braid group on n-strings in R3; we denote this group Bn. It is referred to in the 
literature as the "algebraic braid group." 

Each braid b in Bn effects a permutation b of {1 , . . . , n }. The map IT: b -> b 
is a homomorphism of Bn onto 2W, the permutation group on n letters. Let 

Cn = KerTr. 
Cn is called the "colored braid group" or "pure braid group" The paths 
defining any braid b in Cn go from each point i on the initial Une Lx of fe to a 
point i in the end line L2 of b. The name of Cn comes from the idea of 
coloring each point Pv..., Pn a separate color and coloring the path going 
from Pt to Qt with the ith color (/ = ! , . . . , n). 

<>2 

0 2 

(a) (b) (c) 

°i°2<*i - *2*i°2 A girl's braid - (a2o{l)n. 

FIGURE 3 

The braid group !?„ was first defined by Emil Artin in Theorie der Tôpfe, 
Abhandlungen aus der Math. Seminar der Hamburg Universitàt 4 (1925). He 
proved there that Bn has the presentation 

Generators: al9 a2 , . . . , on_x. 
Relations: otOj = OjOt for \i - j \ > 1, 

°i°i+i°i = */+i<W+i (i - 1 , . . . , » - 2). 

Let a = a ^ • • • on_v We have 
ao1 = o1 • • • a,,.^! = a1a2a1a3a4 • • • aw_x = a^a^o^ • • • aw_x = a2 • a. 

Similarly aota~l = a/+1 (i = 1,2,. . . , n - 2). Thus {ax, a} generate 2?„. 
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I + 1 

A — «2 

I J 

zrx 
FIGURE 4 FIGURE 5 

In his paper Theory of braids [1] Artin gives a presentation for the colored 
braid group C„. 

/-2°!/-i-For any i <j\ set Au = AJt = a , - 1 ^ • • • oi+\ofa+l • 
Generators for Cn: {Atj\ 1 < / <j < n). 
Relations: 1. ArsAjjA~l = Atj if r < s < i < j or / < r < s < j \ i.e., if (r, s) 

and (i, y) do not each separate the other. If (r, 5) and (/, 7) do separate each 
other, choose i < r < s or any even permutation of such /, r, s. Then 

2. ^4r5 AirArs = AisAirAis . 
3. ^4r5 AisArs = AisAirAis(AisAir) . 
If i < r <j < s9 then 
4. ^ r j Ai^Ars

 == \AirAisAir Ais )Aij(AirAisAir Ais ) . 
It is a topological fact that 

THEOREM. Gwew any braided n-path { c^/); / = 1,2,.. . , «} f/iere is a continu­
ous family of homeomorphisms {<p,; 0 < t < 1} of R2 ö«to R2 .SWC/Î */*<z/ 

c,(f) - (c>,(c,(0)), 0 0 < t < 1,1 < j < n. 

That is, a braided n-path can be regarded as a deformation of n distinct 
points c^O),..., cn(0) in R2, and this deformation can be extended to an 
isotopy (<p,; 0 < t < 1} of R2. This isotopy is of course not unique, but any 
two such isotopies can be deformed into one another. 

Our discussion of braids can be slightly generalized in two ways. 
1. There is no need to restrict the endpoints of the n-stringed braids to lie in 

the plane y = 0; the n points can be taken anywhere in the plane R2. 
2. We can consider «-string braids whose endpoints lie anywhere on the 

2-sphere S2 = R2 U 00. In that case the deformations can take place in 
S2 X R rather than R2 X R. We distinguish this braid group from the previous 
one by denoting them Bn(S2) and Bn(R2) respectively. 

Clearly any «-string braid in R2 can be regarded as a braid in S2 and so 
there is a natural map Bn(R2) -> Bn(S2); it is a homomorphism and its kernel 
is the normal subgroup generated by the element ox • • • an_2a

2_lon_2 • • • av 

1 2 3 

/^i r 
1 2 3 

j 

FIGURE 6(a) 
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Next consider the pair (P,S) where P = C U oo, the Riemann sphere, i.e., 
complex projective 1-dimensional space, and S = {s0, sl9..., sn_l) is a set of 
n points in P. We can associate to any element of the «-string braid group 
Bn(P) an isotopy of P which moves S around in P and finally brings it back 
to its original position (permuted). Thus any braid in Bn(P) will induce a 
well-defined action on any structure associated with (P,S) whose objects do not 
change under deformations fixing the points of S. We give three examples. 

1 2 3 4 

FIGURE 6(b) 

(a) 

(c) 

<Ö> s s. 0>) 

(d) 

FIGURE 7 

EXAMPLE 1. Bn(P) acts on irx(P - S), the fundamental group of the space 
P - S. Consider the effect of the braid A24 (Figure 6(b)) on the path around 1 
and 2 (Figure 7). 

*0 s2 

so =0 
*3 

FIGURE 8 

EXAMPLE 2. B4(P) acts on H^P, S) (Figure 8). 
EXAMPLE 3. Let 

/„(so.*i . - .* , . - i ) = P (^ - SoV'^z - s j - " 1 • • • (z - s^y^dz 



BRAIDS, HYPERGEOMETRIC FUNCTIONS, AND LATTICES 229 

where S = {s0,..., sn_l}, ju.0,..., \in_l are complex numbers, and the path of 
integration is selected in P - S. Although the integrand is multivalued, the 
value of fj does not change when the path of integration from st to Sj is 
deformed in P - S, so long as the elements of S are fixed. Hence the colored 
braid group Cn(P) will act on the linear span of the multivalued functions 
{ f if- 0 < i <y < « — 1}. Indeed the full braid group Bn(P) will act if \it, = jiiy 

for all /, j . For example, if n = 3, and the path of integration from st to si+l 

is a straight line (/ = 0,1,2) then the effect of A24 on f0l is a result of two 
changes: 

(i) One is the effect on the path of integration; this is illustrated in Example 
2. 

(ii) Since the new path of integration from s0 to sx makes a loop around s3, 
the integrand changes by a factor e~27Ti^2 for the integration from s3 to sv 

Hence 

^24/01 = Xoi + / l 2 + 723 + e " \~J23 ~ f n) 

= foi-(e-2^-l)(f12+f2,)-

Let JU, = (ju<o>lu'i>--->Jltn-i) a n ( i ^et Vp denote the linear span of the functions 
{ƒ).; 1 < i <j < n - 1}. By the argument used in Example 3, we see that 
Cn(P) acts on V^ and sends V^ to itself. One obtains thereby a homomorphism 
of the colored braid group into the group of Hnear automorphisms of the 
vector space V; the image of Cn(P) is denoted T and is called the monodromy 
group of Vp 

2. Schwarz's Problems. The next example relates the monodromy action of 
the algebraic braid group to a classical result of H. A. Schwarz. 

EXAMPLE 4. Let co = z~^(z - l)~H(z - x)~^dz. Set u = z~\ Then 

f»=f-(W(WB)-
= f1

 U*>+H+I>*-2(1 - w)_/ i l(l - uxY^du 

= f1 iT*»(l - u)'^(l - uxY^du, w h e r e ^ = 2 - /A0 - /ix - /ix. 
'o 

In 1778, Euler introduced the hypergeometric series 

where (a, n) = n/
n
=T0

1(û + /), as a solution of the hypergeometric differential 
equation 

(HDE) JC(1 - x)y" +(c-(a + b+ l)x)y' - aby = 0 

and he knew the identity 

file:///~J23
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Thus fx^ = 1 - b, \ix = 1 4- b - c, \ix = a, and 

/•OO 

ƒ (o = constant X F(nx,l - ^ , 2 - ^ - /A^; X ) . 
' I 

It was observed by Pochhammer (1870) and Schlàfli (1871) that, for any 
g,h^S— {0,1, JC, oo}, the integral f£o) is a multivalued function of x 
satisfying (HDE). H. A. Schwarz, in his seminal paper Über diejenige Falle in 
welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres 
uiertes elementes darstellt, J. für Math. (1873), considered the space W of all 
solutions of (HDE). Each solution is multivalued on P - {0,1, x, oo} and 
under analytic continuation around the punctures S = (0,1, x, oo}, each solu­
tion goes into another element of W. Take as a base in W 

F1(x) = / 1 c o , F2(x) =[*<*. 

The effect of moving x around 1 on Fx(x) is given as in Example 2 above by 
the change in the path of integration from (a) to (b) in Figure 9 and the change 
in the value of the integrand. Thus Fx(x) -> ^i(jc) + F2(x) - e~24nriflxF2(x) 
and Schwarz's space W coincides with our V^ where /x0 = c - a, iix = 1 4- b 
- c, fix = a. 

*—> 
0 1 

FIGURE 9 

Classically, this change under analytic continuation is called "monodromy 
of x around 1," and the set of all monodromies arising from moving one 
puncture in S around another generates the monodromy group. It is nothing 
but our previously defined monodromy action of C4(P) on V^. 

The hypergeometric function Fx(x) is an algebraic function of x if and only 
if the monodromy group 1^ is a finite group. For this to happen, one needs 
0 < [is < 1 for all 5 G 5 , jw0 + fix + nx < 1, and some additional conditions 
related to the regular platonic solids. Schwarz determined all these cases (cf. 
Figure 10; TT\X = angle at ƒ(*), x G (0,1, oo}). 

In the same paper Schwarz considers the case of infinite monodromy groups 
and gives sufficient conditions for the monodromy group to be discrete. To 
answer this question, it suffices to consider the action of the monodromy group 
on the one-dimension projective space P consisting of 1-dimensional subspaces 
of W\ let T̂  denote this monodromy group action on P. Accordingly, Schwarz 
considers the map 

ƒ: x ^ Fx{x)/F2{x) 
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FIGURE 10. Schwarz's list 

where Fl9 F2 are any two linearly independent elements of W. We assume that 
]Lt5 is real for all s e S. The geometric picture that Schwarz unveils is very 
pretty: 

ƒ maps the upper half-plane onto a triangle T in P bounded by circular arcs 
with angles TT\0, ir\v TTX^ at /(O), / ( l ) , /(oo) respectively, and ƒ maps C 
minus the slit [0 < x < oo] to the quadrilateral y obtained by adjoining to the 
triangle T its "Schwarz reflection" in the arc /(O) to /(oo) (cf. Figure 11). If 
X0 + X 1 H-X 0 0 <1, then the three circular arcs of the triangle T each meet a 
common circle C orthogonally. The monodromy of ƒ around a puncture s G S 
induces a rotation of angle 2nXs around f(s). One has X5 = 1 - ps - JUX for 
any s e {0,1, oo}. Schwarz proved: When 

(INT) 
XQ1, XX \ X^1 are integers and 

*0 + * l + * o o < 1, 

C U oo 

FIGURE 11 
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then the effect of the monodromy group on the closure of the quadrilateral 
J^= / (C - [0 < x < oo]) is to move it over the entire interior of the disc B1 

bounded by C so as to " tile" B1 by quadrilaterals. Under these hypotheses the 
monodromy group acts discontinuously on the disc Bl, i.e., for any compact 
subset K c Bl there is at most a finite set of distinct elements y of the 
monodromy group such that yK meets K. One can infer that the monodromy 
subgroup in Aut W as well as T in Aut P are discrete. 

Indeed, something even stronger is true when condition (INT) holds: The 
multivalued mapping ƒ: C U oo -> Bl has a single-valued inverse', that is, we 
can interpret ƒ as mapping a branched covering space of C U oo onto the disc 
B1 and ƒ has an analytic inverse n: B -> C U oo such that n(f(x)) = x for 
all x e C U oo. We can thus identify C U oo with the orbit space 1^ \ B1 and 
7T as the natural projection B1 -» T \ Bl. One visualizes this geometrically by 
identifying the arcs [/(0),/(l)] = [/(0),/(l)_], [/(l), /(oo)] = [/(1)_, ƒ(»)]. 

There is an identity in the colored braid group on 4 strings relating the 
winding of x around 0, 1, and oo, which we denote A0x, Alx, Aoox respec­
tively; namely, A0xAlxAO0X commutes with each of A0x, Alx, A^x. Inasmuch 
as any bianalytic map of the disc Bl commuting with rotations around the 
three distinct points /(O), / ( l ) , /(oo) is the identity, we infer that A ~* = 
A0xAlx. This identity can also be deduced from the geometry of the quadri­
lateral &. 

The group Aut B1 of bianalytic maps of Bl onto Bl is isomorphic to the 
group of bianalytic maps of the upper half-plane H in C U oo, since there is a 
bianalytic mapping taking Bl to H. Thus Aut Bl = Aut H, and the latter is 
given by the group of all fractional linear transformations 

r, Z G C U O O , a, b, c9 d real. 
cz + d 

Thus Aut if is isomorphic to the "projective linear" group PGL(2,R), the 
group of all 2 X 2 real invertible matrices divided by the central subgroup 
consisting of scalar multiples of the identity. The group G = PGL(2, R) 
depends on three real parameters. Each subgroup 1^ with /i satisfying condi­
tion (INT) above is a discrete subgroup of G. From the fact that 1^ \ Bl is 
compact, we can deduce that G/T^ is a compact space in its natural topology. 

A subgroup T of a topological group G such that 
(1) T is discrete in G, 
(2) G/T^ is compact (or, more generally, has finite Haar measure), 

is called a lattice in G. What we have shown above is that lattices in Aut B1 

( = PGL(2, R)) can be constructed as homomorphic images of the braid group 
on 4 strings. 

More precisely, in both the first Schwarz case of finite groups acting on the 
Riemann sphere P1 = C U oo, and in the second case of lattices operating on 
the disc Bl

9 the groups are homomorphic images of the colored braid group on 
4 strings. In both cases the monodromy groups preserve a hermitian form, 
definite in the case where T„ is finite, indefinite in the case that TIL is infinite. 
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In the paper Monodromy of hypergeometric functions and non-lattice integral 
monodromy by Deligne and Mostow [3], the Schwarz construction of mono­
dromy groups is generalized to higher dimensions, and it turns out that for 
topological reasons, an hermitian form is preserved. Generalizing Schwarz's 
results then gives rise to two problems. 

PROBLEM 1. When is the monodromy group discrete? 
Note that in the case that a definite hermitian form is preserved, the 

monodromy group is finite whenever it is discrete. 
PROBLEM 2. In the case that the (multivalued) hypergeometric functions of n 

variables map the space of n complex variables into the «-ball Bn, when does 
there exist a single-valued inverse? 

The answers to these questions are worked out in [3, 10, and 11] and will be 
described below. 

3. Schwarz's second problem in n dimensions. 
3.1. In the previous section, we defined the action of the monodromy group 

T̂  on the 2-dimensional vector space of solutions of the (HDE) 

x(x - l)y" +(c -(a + b + l)x)y' - aby = 0. 

We also saw that the effect of analytic continuation of x around 0, 1, or oo 
on solutions of the form 

f z - ^ - l H z - j c P i , 

where si9 Sj e S = (0,1, x, oo} could be computed knowing 
(i) the action of the braid group on the homology group HX(P, S), and 

(ii) the multiplier e_2,rv-M/ o n fae integrand when x makes a circuit about 
one of the elements st of S. 

This suggests that one can study the monodromy action in hypergeometric 
functions without resorting to differential equations, as was done historically, 
in dimension 1 by Schwarz and dimension 2 by E. Picard in 1885 ([13]; cf. also 
§3.14 below). 

Picard defined a hypergeometric function of two variables as a linear 
combination of functions of the type 

F„(x, y) = ƒ ' z-*>{* ~ !)-"(* ~ * r * 2 ( * " yY^dz, 

where s, t e {0,1, x, y, oo} and one defines a linear combination of 

= ƒ' (z - x0y»°(z - Xlr»(z - x2r> • • • (z - xn+1y^dz, 
where x0 = 0, xx = 1, s9t ^ ( x 0 , . . . , JCW+1, oo}, to be a hypergeometric func­
tion of n variables. Note that one can allow x0, xx to be arbitrary without 
changing the class of functions defined since (0,1, oo) goes to (JC0, xl9 oo) by 
the change of variable z -> az + b with b = x0, a = xx - xQ. 

The account presented here, taken from the joint paper with P. Deligne [3], 
studies the monodromy of the hypergeometric functions via the concept of flat 
vector bundles and cohomology with coefficients in a flat vector bundle. 
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3.2. Let P = C U oo, the complex projective line. 

M - { ( x 0 , . . . , x w + 2 ) G P M + 3 ; x l # x y . f o r / ^ ; } . 

For m e M, set Pm = P - ( x 0 , . . . , x„+2}, where m = (x 0 , . . . , x„+2), and 

PM={(x,m)ePxM, xePm). 

PM is the family of (n + 3)-punctured projective lines. 
Fix an a € Cw+3, a = (a0, a^.. . , aw+2), such that 

ai, * 0, 0 < « < » + 2, 

n + 2 

0 

(Note: ultimately, we shall choose a, = e2"*^^.) 
Let Pm = the simply covering space of Pm and let fli(Pw) denote the 

fundamental group of Pm. fli(Pm) operates on Pm as the group of covering 
transformations and Pm = 7r1(Pm)\Pm. 

Let â denote the homomorphism ^(P,^) -> C - {0} which maps each 
"small" loop around xt (i.e., not looping around any Xj for j * i) in the 
counter-clockwise sense to the complex number at. Then set 

^m = C x W i ( P w ) P m : = C x P m / ^ , 
where & is defined as the relation on C X Pm: 

( c , f r ) - ( c S ( / ) , p ) f o r a l l / e ^ P j . 
The projection of C X Pm to Pm induces a projection of Lm to Pm with fiber C 
and as we move from fiber to fiber along a path / in the punctured complex 
line Pm, the fiber C returns to itself, but multipUed by «(/). Thus the piece of 
Lm over a simply connected neighborhood U in Pm resembles C x ( / , but 
Lm # C X Pw. We call Lm a /fa/ one-dimensional vector bundle with monodromy 
a on Pm. 

By similar considerations, one can construct a flat one-dimensional vector 
bundle L on P^ with the property: 

Lm has monodromy a along each Pm, 
where Lm denotes the restriction of L to Pm. H\Pm9 Lm), the cohomology 
group with coefficients Lm, is a vector space over C; we shall say more about 
this later. 

The projection PM -> M is, locally on M, a topological direct product. 
Hence the family {H\Pmi Lm); m G M} forms a flat vector bundle over M. 
This bundle is not quite canonically determined by a because Lm is not; Lm is 
merely uniquely determined up to an isomorphism c -> Xc, A e C* := C -
{0}. 

We get a bundle canonically determined by a when we divide by C* and 
descend from each vector space H\Pm> Lm) to the associated projective space. 
Set 

B(a)M={PHl(PmiLm);meM}; 

this is a flat bundle of projective spaces. That is, fix a base point 0 in M, then 
(3.2.1) B(a)M=PH\P0,L0) X„i(M>0)P0. 
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The action of 7rx{M,0) on PH\P0,LQ) can be described in two equivalent 
ways. 

(i) Let m(t) be a closed path in M with m(0) = m(l) = 0. As P0 moves 
continuously in PM to position Pm ( 0 , PH\PQ,L0) gets transported via 
flatness in B(a)M (i.e., horizontally) to PH\Pm, Lm) and returns finally to 
PH\P0, L0)y but with a twist. Indeed, this twist is the end result of an isotopy 
carrying P0 to Pm(t), 0 < t ^ 1. 

(ii) No generality is lost in choosing the base point of M 
0 = (0 ,1 ,2 , . . . ,n + l,w + 2). 

Then TT^A^O) consists of n + 3 paths ct(t) in P, 0 < f < 1, with (1) c,(0) = 
c,(l) = i, 0 < i < w + 2; (2) the "strings" (c , (0 ,0 , 0 < t < 1, in P X R do 
not intersect. Thus ^(M.O) is the colored braid group Cn+3(P) on n + 3 
strings in P. The atf/oft o/ ^(MjO) ÖH PHl(P0, LQ) is the action of the colored 
braid group, defined previously. Let the homomorphism 

(3.2.2) 0: ^ (A/ ,0) -> A u t P t f ^ c » A)) := PGL(if 1 (^o^o)) 
denote the action of 7rx( M, 0). 

DEFINITION. Ta = Image 0 is called the a-hypergeometric monodromy group. 
The following facts are proved in [3]. 

LEMMA 3.3. If as ¥= 1 for all s e S, then 

H\PQ,LQ) = H]{PQ,LQ). 

Here H* denotes cohomology with compact supports. The dual assertion 
HX(PQ, LQ) = H[f{P0, LQ) for homology asserts that a locally finite 1-cycle 
with coefficients in the dual L of L is homologous to a compactly supported 
one. We can illustrate this as follows. The half-open interval (0, p] is a closed 
1-chain in the plane punctured at 0. In the chain complex with local coeffi­
cients L, a small positive loop c around 0 has 3c = a^1/? - p. Hence d\c = 
9(0, p] for X - 1 = <XQ1 — 1 and in fact (0, p] is homologous to Xc. 

Xc 

- Q •••• 
X = 

( > 7 v o _ y ' «o1 

FIGURE 12 

LEMMA 3.4. dim H\P0, L0) = w 4- 1 if at , # 1 /or some / G (0 , . . . , n + 1). 

n = 3 

n - 1 

*o 

FIGURE 13 
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A base for H[f(P0, L0), the dual of H](P0, L0), can be illustrated. Set 
S = P - P0, as = a, if ^ = 0(/). Partition the set of punctures S into two 
(nonempty disjoint) subsets Sl9 S2. Choose two trees 7\, T2 and an embedding 
p. TJAT2 -» P with the vertices of Tf going to St (i = 1,2). For each open 
edge a of 7\ or T2 choose an orientation of « and a section 1(a) e H°(a/i*L0). 
Then, as proved in [3], 

LEMMA 3.5. If Us%Sl
 as * !» '** ^ ö / 1-^fej {1(d)fi \ a; a e TX U T2} W 

abase of HlJ(P - S, L0). 

From now on assume that 

(3.6) |a,| = 1 for all i, 0 < i < w + 2. 

Then the complex conjugate L of the flat one-dimensional bundle L is 
isomorphic to JL, the dual of L, and corresponds to a - 1 = (a^1 , . ..,a~+2)-
Consequently the monodromy group Ta, which respects the natural cup 
product pairing 

Hl(P09L0) X Hl(P09L0) -> i/c
2(P0>C) - C, 

preserves a hermitian form 

(3.7) i/^o* L0) X H\P0,L0) - C, 

in view of Lemma 1. Let i// denote the hermitian form on Hl(P0, L0) defined 
by (3.7). Then we conclude 

r.cpu^Co^o).*) 
that is, Ta lies in the image in PGL(H\P0, L0)) of the unitary group of the 
hermitian form *//. The hermitian form is unique up to a real scalar factor. One 
can normalize the choice of \p by imposing the condition: For any holomor-
phic 1-form to on P0 with coefficients in L0, 

* ( [ « ] > [ « ] ) = f ƒ co A cô > 0 , 

where [co] is the cohomology class determined by the de Rham homomor-
phism. 

LEMMA 3.8. Write at = e W 3 ^ with 0 < /x, < 1, 0 < i < n + 2. Then the 
signature of the hermitian form is 

( In+2 \ n + 2 \ 

With a and JU, related via at = elmy>~x **« for each /, we set 

r = r. 
3.9. We now relate the foregoing to hypergeometric functions of n variables, 

which are by definition related to the differential form 

"fl(2 -*,)-*&, 
i - O 
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where ( x 0 , . . . , xn+1) and j* = (/i0 , . . . , nn+1) are in Cw+2. Define /z„+2 by 
«4-2 

E /*i = 2 -
0 

Set a, = e2^~l ', 0 < / < « + 2, and let L be a flat one-dimensional vector 
bundle on PM with monodromy a along each Pm, m e M. 

Let e denote a multivalued section of Pm in Lw; that is, a constant section 
of the product bundle C X Pm over the simply connected Pm viewed as an 
Lm-valued section on Pm. Then set 

(3.9.1) %(m)~ f i (*" */)""«&• 
i - O 

This defines a meromorphic differential 1-form on P, holomorphic on Pm, 
whose "order" or "valuation" at oo is -ju.n+2. 

Set M^ = {(JC0, *! , . . . , xw+2) e Af; xM+2 = oo). 

LEMMA 3.10. The cohomology class of co^m) in Hl(Pm, Lm) is nonzero. 

LEMMA 3.11. The map m -> w^m), m e Af̂ , defines a holomorphic section 
of M in the flat projective space bundle B(a)M. 

The group AutP, which is just PGL(2), operates diagonally on Pn+3 and 
hence on M. Set 

(3.11.1) Q = Aut P \ M = (Aut P)O0\MO0 

where (AutP)^ is the subgroup of AutP fixing the point oo. The fibering 
(3.2.1) B(a)M -> M descends to B(a)Q -> Q. Up to a scalar factor, the value 
of (3.9.1) remains unchanged under the action of (Aut B)^ so that the section 
of Lemma 3.11 cô : M -> B(a)M descends to a well-defined section, also 
denoted o^; 

(3.11.2) «VÖ->*(«)<*. 

We call this map the Schwarz section. 
Choose a base point o G g , and above it ô e g , the simply connected 

covering space of Q. Then the homomorphism (3.2.2) descends to a homomor-
phism 

(3.11.3) 8: 1^(0,0)-> AutPHl(P09L0). 

Schwarz section w^ defines a ^ ( g , 0)-equivariant map 

(3.11.4) w^.Q-*PHl(P0,L0). 

In the case n = 1, the map w^ is precisely Schwarz's multivalued map 
P - {0,1, oo} -> P. Indeed, when n = 1, A u t P \ M = P - (0,1, oo}, we can 
write any point m of MM as (0,1, x, oo) mod (Aut P ) ^ , and choose as a base 
of linear functions on Hl{PQ,L0) the Une segments (0,1) (l ,x), we find as 
homogeneous coordinates of co (x) 
(3.11.4)' 

If z'K>(z - l ) - * ( z - *r*2<fe, ƒ* z-^o(z - l ) - ^ ( z - xY^dzY 
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In the general case, the homogeneous coordinates of the map cô  are given by 
hypergeometric functions of n variables. We call the map ù^ of (3.11.4) the 
Schwarz multivalued map when it is regarded as a map of the space Q. 

3.12. Inasmuch as we are ultimately interested in constructing lattices in 
PU(1, w), we shall assume henceforth that 

( 0 < u , < 1 forall/ = 0 , l , . . . , « 4- 2, 
(3'm) U/-2. 
It follows at once from Lemma 3.8 that the signature of the hermitian form is 
( i ,«) . 

In the case n = 1, the signature of the invariant hermitian form explains 
why there is a common circle orthogonal to the circular arcs of Schwarz's 
triangle when X0 + \ + X^ < 1. 

An interesting interpretation of the Schwarz section results from the 

LEMMA 3.13. H\P0, L0) = Hlfi + H°>1 (direct). 

Here Hl>° is the subspace represented by holomorphic 1-forms on P0, and 
H0,1 is the subspace represented by anti-holomorphic l-forntis, i.e., every 
cohomology class in H0fl is represented by an L0-valued 1-form w with w a 
holomorphic L0-valued form on P0. 

Inasmuch as Pm is unchanged topologically as m varies, the fiber bundle 
PM -> M of (3.2) is topologically flat but not holomorphically for n > 1, since 
the holomorphy structure of Pm does vary with m. Upon identifying 
H\Pm9 Lm) with H\P0, L0) for m near 0, the subspace Hl0(Pm, Lm) varies 
in Hl(P09 L0) as m varies in M. By Lemma 3.8, 

dim/f1 '° = l . 
Hence in PHl(P0, L0), PHl0(Pm9 Lm) is a point. The Schwarz section of 
(3.11.1), 

%:Q->PHl(P09L0), 

thus expresses the variation of holomorphic structure on Pq as q varies in Q, 
3.14. In the 1885 paper [13] cited above, Picard generalized Schwarz's second 

problem: If X0 + Xx + X^ < 1 and X'1 is an integer (s == 0,1, oo) then the 
Schwarz multivalued map 

u M : P - { 0 , l , o o } - > P 

has a single-valued inverse B1 -> P. 
Expressed in our notation, Picard asserted the following theorem. 

Assume 

(3.14.1) 0 < /*i < 1 0 = 0 , . . . ,4) , 

(3.14.2) ItoJ", = 2. 

Then the Schwarz multivalued map 

coM: Q -> complex projective 2-space 
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carries Q into the 2-ballB2. If, moreover, 

(3.14.3) /A, + iij < 1 for all 0 < i *j < 4, 

(3.14.4) ( l - ^ - ^ e Z U o o , 

then the map w^ has a single-valued inverse. 

This result implies immediately that the monodromy group 1^ is discrete in 
PU(1,2), the subgroup of PGL(3,C) which keeps the complex 2-ball B2 

invariant. Furthermore, Picard could show that T^B2 has finite measure, 
which implies that 1^ \ PU(1,2) has finite Haar measure. 

Whereas all the claims of Picard are correct, his proof that fy maps a slit 
simply connected domain in g to a fundamental domain of T is defective (cf. 
[9]). In 1891 Picard remarked without proof that hypothesis (3.14.3) could be 
dropped. 

In an effort to give a correct proof of Picard's theorem above and to 
generalize it to n dimensions, Deligne and I were led to reformulate Picard's 
result, as follows. 

THEOREM 3.15. Let \i = ( J L I 0 , p v . . . , jww+2), n > 1. 
Assume fi satisfies (3.14.1), (3.14.2), and the condition 

(INT) For all 0 < i # j < n + 2, such that /i, + /ty < 1, 

( l - / i r / i y ) _ 1 6 Z U 0 0 . 

Then the Schwarz multivalued map w^ induces a T^ equivariant homeomor-
phism 

Oft "» B", 
where Bn is a ball in complex projective n-space and Q$t is a branched covering of 
a completion Q$t of Q which depends on JU. Moreover, T^ is a lattice in PU(1, n). 

A central point in the proof is the selection of the correct completion Q*t of 
Q; this completion is the same as the weighted completion occurring in 
Mumford's Geometric invariant theory [12; 3, §4]. 

4. Schwarz's first problem in «-dimensions. 
4.1. A chronology of the monodromy of hypergeometric functions begins 

with Euler's investigation of the hypergeometric differential equation in 1778 
[4], continues through Riemann's clarification in 1857 of the global nature of a 
multivalued hypergeometric function [15], Schwarz's 1873 paper [17], and 
Picard's 1885 paper [13]. However, the chronology of the results presented in 
the foregoing section had its origins in 1978 with my attempt to construct 
nonarithmetic lattices in U(2,1), in order to explore the limits of validity in the 
case of R-rank 1 groups of the celebrated 1974 theorem of G. A. Margulis, 
Irreducible lattices in semisimple Lie groups of R-rank greater than 1 are 
arithmetic [6]. 

In 1966 V. S. Makarov [5] had constructed nonarithmetic lattices generated 
by reflections in faces of geodesic polyhedra in real hyperbolic 3-space, R/*3, 
and in a series of papers starting in 1967 [18], E. B. Vinberg carried out a basic 



240 G. D. MOSTOW 

systematic study of lattices generated by reflections in the faces of a geodesic 
simplex in real hyperbolic «-space, R«w, finding nonarithmetic lattices only for 
« < 5. 

Direct efforts to transfer Vinberg's results to complex hyperbolic «-space 
Chn were obstructed by the fact that Ch" has no geodesic polyhedra f or n > 1 
since any geodesic subspace of Ch" is a complex submanifold and has even 
dimension. 

If one tries nevertheless to mimic algebraically in Chn the construction of 
subgroups in the isometry group PU(«,1) of C«n, one is led to groups 
generated by complex reflections, but then one faces the problem of proving 
these groups are discrete. In the case of R«w, the geodesic simplex one begins 
with is a fundamental domain if its faces meet at a dihedral angle ir/n with « 
an integer. In the case of C«", the fundamental domain, if it exists, is elusive. 

At the 1978 Helsinki Congress I announced a construction of a family of 
subgroups 

Tp<t (\t\ < 3(1/2 -l/p),p = 3,4,5) 

in U(l, 2) which are generated by complex reflections in C«3, and a proof that 
for 17 values of (p, t) with / > 0, T(p, t) is a lattice and that 7 of these lattices 
are nonarithmetic (cf. [8]). A summary of the construction is given in [11, §2]. 

The complex «-ball Bn is of course a model for complex hyperbolic « space 
Chn and PU(1, «) is the connected component of the identity in its group of 
isometries. Furthermore, 

(4.3) The monodromy groups 1^ defined in §3 above are generated by complex 
reflections of Chn. 

One sees this easily with the help of Lemma 3.5. For, given any two elements 
SQ, sx of the set S of « + 3 punctures, one chooses a tree 7\ consisting of a 
single edge and an embedding /} as in Lemma 3.4. /?: 7\ U T2 -> P with the 
vertices of 7\ going to {s0, sx} and the vertices of T2 going to S - {s0, s^. 

so Ti h T2 

' r \s • * 

c(Mi) 

s0
 si 

• 1 !» 

c(t,s0) 

FIGURE 14 
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One can then choose an isotopy twisting sx around s0 which leaves fixed 
P(T2). Taking as base of H[f(P - S, LQ) the set of 1-cycles {1(a)P\a\ a e Tx 

U T2}, a denoting an oriented open edge and 1(a) e H°(a,/i*L0), we see 
from Figure 14 that f or v = l(a)p\a 

v -> («oO^) v, v in 7\; u -+ u, v in T2. 

In 1980, when I first learned of the 1885 Picard theorem about lattices in 
PU(1,2) arising from monodromy of hypergeometric functions, the similarities 
between T and 1^, were striking. However, it was possible to prove: 

(4.4) The lattices Tpt of (4.2) and the lattices T^ which satisfy Picard's 
integrality conditions are different. 

Nevertheless, there is a relation between T and T n first given in Gener­
alized Picard lattices arising from half-integral conditions [10], which we shall 
elaborate on in §5. 

Suppose that S1cz S and all the {/i5; s e Sx) are equal. Let 2 denote the 
permutation group of the subset Sv We can regard ^ ( Q / S ) as a subgroup of 
7^(0) and, as shown in [10], the homomorphism 

0: 7^(0,0) -+AutPH1(P0,L0) 

of (3.11.3) extends to a homomorphism 

(4.5) 6: ^ ( 0 / 2 ) - AntPH^P^Lo). 

Set r ^ = Image 02. Then 
i - i ; -> i ; 2 -> 2 -> i 

is exact. 

THEOREM 4.6. ;4&swme f/iaf 

0 < J U , < 1 for all s ^ S , 

and /« addition (ps)s(=s satisfies the condition: 
( 2 INT) For alls, t e S with /x, + /*, < 1, 

IZ otherwise. 
Then T^ is a lattice in PU(1, n), n = card 5 — 3. 

REMARK 1. Inasmuch as I ^ is a finite extension of 1 ,̂ T^ is a lattice 
whenever T is. 

REMARK 2. We will see in the next section that the subgroups Tpt of (4.2) are 
conjugate in PU(1,2) to a subgroup of r^2 of index at most three. Chronologi­
cally, this is the observation that led to the investigation of condition (2 INT). 

The next theorem asserts the converse of Theorem 4.5 for dimensions n > 3. 

THEOREM 4.7. Assume n > 2 and 

0 < ju,0 < 1 for all 0 e S, 
£,**, = 2. 

If T̂  is discrete in PU(1,«), then n = {lis}sGS satisfies condition (2 INT) 
except for /i = (^ , 12, Ï2> n> n> n)-
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This theorem is proved in [lib]. (Note the error in the hypothesis of 
Theorem 4 of [11a]: d > 3 not d > 1; cf. [lib].) Theorems 4.6 and 4.7 solve 
Schwarz's first problem for the monodromy groups fixing a hermitian form of 
signature (1, n). In the case that 2 < Hs[is < n, set p = (E5/x5) - 1 and 
q = n + 1 - p. Then 1^ c PU(/?, #) by Lemma 3.8. The condition that TM be 
closed in PU(/?, g) implies that (as in the case of PU(1, n)) 1^ is a lattice in 
PU(/?, q). Therefore, by the celebrated theorem of G. A. Margulis [6], T is an 
arithmetic lattice in PU(/>, q). On the other hand, in Proposition 12.7 of [3], 
there is a criterion for 1^ to be arithmetic in PU(i/l(PQ, L0), \p), i// denoting 
the invariant hermitian form, that is valid for any signature (p,q): 

(4.8) Let d denote the least common denominator of {fxs: s e S). Then T^ is a 
lattice in P\J(H1(P0, L0)) if and only if for each integer A relatively prime to d, 
with 1 < A < d - 1, 

£ (Aiis) = 1 or c a r d S - 1. 
seS 

Here for any rational number b9 (b) denotes the fractional part of 6, i.e. 0 
< (b) < 1 and b - (b) e Z. 

Theorem 4.7 and (4.8) together yield all the /x such that 1^ is discrete in all 
cases that « > 2. In the case that p = 0 or q = 0, T̂  is closed if and only if it 
is finite, and then the condition in (4.8) is satisfied. In the case n < 2, neither 
the condition (2 INT) nor the condition (4.8) is necessary if the group 1^ is 
infinite. The Hst of all lattices 1^ in PU(1, n) not satisfying (2 INT) is derived 
in [lib]. That hst together with (4.8) and Theorem 4.7 give a complete solution 
of Schwarz's first problem. 

5. Presentations for 1^, T(/M), and T^. In order to describe explicitly the 
relation between the T t and the T^, it is convenient to choose a set of 
generators for the pure braid group on 5 strings in P1 that is stable under the 
permutation group of the subset Sx of punctures S = { 0̂, sl9 s2, s3, s4}. 

Assume Sx = {s0, sv s2} and assume ft0
 = Mi = Pi-

Identify the projective Une P with 5 2 , the 2-sphere with its standard metric. 
Choose s0, sv s2 equally spaced on the equator of S2 with s3 and s4 at the 
North and South poles respectively. Denote by (TJ) for any / # j with 
/, j G {0,1,2,3,4} the pure braid that moves st along the shortest path to a 
point near j . , then makes a small circuit in the positive sense around j -, and 
then returns to its original position. For /, j e {0,1,2}. Let ^ff denote the 
braid that interchanges i and j via a half-turn isotopy in the positive sense 
that leaves each point fixed outside of a small neighborhood of the shortest arc 
joining / to j . 

Let / denote the cyclic permutation 0 -> 1 -> 2 -> 0 of {0,1,2,3,4}. We 
denote by / also its reaHzation as a rotation by angle 2TT/3 in the positive 
sense around the North pole of P, its effect on PHl(P - S,L\ and its 
realization as a braid in B5(P\ the braid group on 5-strings in P. We shall 
require below the following braid group identities that can be verified directly 
from inspection of the diagrams (see Figure 15). 

J-l$flti2} =(0>~1 

(5.1) J(Lp}$$ = ( 0 > _ 1 
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' - \ojFvi/? dD-1 

FIGURE 15 

Set 

(5.2) 

A, = 80s), A] = Of®), 

5, = fl((T-l i + j)), i = 0, l ,2 (mod3) 

*, - «(^J/f^) 

where the circuit (T^)i is chosen so as to cross the equator only on the short arc 
( i - l , i + l ) . 

From the braid identities (5.1), we infer 

(5.3) J-lRtRM-AT\ JRMRt-A',-\, 

JRt = Ri+lJ, / = 0,1,2 (mod 3). 

The product of the pure braids 

® & CD © CO) <G> = 

FIGURE 16 

is in the center of the colored braid group C4(R
2) on 4-strings in R2, and 

therefore its image in r is central in 1^, and therefore central in PU(1,2) since 
r is of finite covolume in PU(1,2), by a well-known (cf. [2]) result of A. 
Selberg. Inasmuch as PU(1, n) has only the identity element in its center, we 
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get 
(5.4) B1A0A2B2A1B0 = 1. 

The group I^ is generated by any five of { A0, Av A29 B0, Bl9 B2 }. 
As additional identities coming from the braid group we get 

At = Ai_xAi+xBi = BiAi_1Ai+l = Ai+1BiAi_l9 

R' = A~l A~lA~l = A'~xA'~XA'~X = A"1 R A'~x = A' R A'1 

= (Ri-lRi+l) , 

(5-5) * , - * ? , 
AtBt = BtAi9 

AiA'j-A'jAt for y # i, 

BiB'j-B'jBt for j*i. 

For any i, y with i ¥= 7, set 

JFie assume henceforth that \i satisfies condition (2 INT) /or 5X. Then ktj is an 
integer except when /, j e (0,1,2}. For any / # y e (0,1,2} we set 

(*,,. i f * v e z , 
12A:iy otherwise, 

k3 = k3i9 k4 = k4i ( / , ; = 0,1,2). 

Then 

(5.6) T has the presentation 

Generators: Al9 Al9 A09 Bl9 B29 B0 

Relations: AiBi = BtAi9 BXAQA2B2AXB0 = 1, 

Ap = 1, B* « 1, 

(A^A^B^-i, Urur^o1)*34-!-
The group rM2 has the additional generators R09 Rl9 R2. In view of (5.3), 

the group T can be generated by / and JR0 only, and from (5.5) and (5.6) one 
can derive a presentation for T 2. 

Set T̂ * = (R0,Rl9R2)9 the subgroup of r^2 generated by R09 Rl9 R2. One 
has 

\RQRXR2) = J • RQRX • R2RQ * RXR2
 ==: J RXR2 • JR2RQ • RXR2 

= 4̂j • «/ R2RQ ' RXR2
 == 4̂̂  J RXR2 ' J RXR2 

= A,-\ 

Hence 

(a) ( H o * ^ ) 3 * ' - ^ - " ' - ! . 
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Similarly 

(b) (R^RJ31* - A[-3k< - 1 
and from (5.5) one deduces 

(c) (R0R2)
3k» = l. 

Relations (a)-(c) yield a presentation for T* which coincides with the presen­
tation for 1^, given in [8] when we take (/?, t) and ju, related by 

(5.7) 

that is, 

M3 = 4 + 2^ ~" 2*) M4 ~ 4 + 2^ + 2*> 

^ = ( 2 - ^ 0 ) » ^ = M 3 - M 4 -

By the strong rigidity theorem for PU(1, «), n > 1 we conclude that [7] r * 
is conjugate in PU(1,2) to 1^ ,. Thus we conclude 

THEOREM 5.8. The lattices Tpt of (4.2) are conjugate in PU(1,2) to the 
subgroup T* of 1 ^ , where Mo = Mi = M2 = 2 - i» M3 * i + ^ " H f*4 = i 
+ 2 7 + 2 ^ The lattice Tpt is conjugate to a subgroup of index at most 3 in T^. 
In any case, T^ - (j, TpJ). 

In §17.1 of [8], there is a criterion for deciding whether or not J belongs to 
Tp r For the 17 lattices Tp t with p = 3,4,5, the element / belongs to Tpt in 7 
cases, and for those cases T^ = Tp t. In those 7 cases, 1^ = Tp t for p = 3,5 
but the /i does not satisfy the condition (INT) of Theorem 3.15; for p = 4, JU 
satisfies condition (INT) and 1^ is of index 6 in T r 

In elaboration of remark (4.4) above, there are 27 solutions ju satisfying the 
hypotheses of Theorem 3.15 for n = 2, ignoring permutations of indices (cf. 
[3]). Of these 27 5-tuples, 22 have three equal terms (cf. [4]) and for such /x, the 
lattice T̂  is commensurable after conjugacy with Tp t; in these 22 cases, the 
integers p are even. Thus, under the isomorphisms implicit in (5.7), the list of 
Picard lattices omits the 1^ with fx satisfying (2 INT) but not (INT) and 
among these are, even allowing for commensurability, the Tpt with p odd. 
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