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1. Introduction. With statistical mechanics having been a central theme in my 
research program, it gives me special pleasure to have been invited to lecture in 
memory of one of its great founding fathers, J. Willard Gibbs. I feel personally 
closer to Gibbs than to two of the other fathers, Maxwell and Boltzmann. 
During the late 1940s and early 1950s, I had the good fortune of having many 
discussions with Edwin Bidwell Wilson, collaborator on the Gibbs-Wilson 
vector analysis book, probably the Gibbs student closest to the master, and 
eighth Gibbs lecturer. Since Wilson's favorite topics for discussion were Gibbs 
and the National Academy of Sciences, after n of these I began to feel that 
Gibbs was a third grandfather, one whom I never had the joy of knowing, and 
that I was prematurely a member of the inner circle of the National Academy 
of Sciences. Incidentally, Wilson (author of a once-popular advanced calculus 
book, editor of the Proceedings of the National Academy of Sciences during the 
period when it evolved into an internationally prominent journal, and for a 
time professor of vital statistics at the Harvard School of Public Health) 
considered himself to be the middleman of statistical mechanics in the United 
States. He was Gibbs' student and a teacher of Richard Tolman, whose 
treatises on the subject were classics of the 1920s and 1930s. Wilson, while 
head of the MIT Physics Department in the early 1920s, hired J. S. Slater, who 
became a teacher of Jack Kirkwood, the man who directed more Ph.D. 
students and postdoctorals in statistical mechanics than any other American 
professor. 
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Wilson also liked to identify himself as Calvin Coolidge's scientific advisor. 
Apparently, Coolidge enjoyed reading the rotogravure section of the Sunday 
newspapers, which frequently contained some picture news about science. 
Wilson was not surprised on a Monday morning when he got a phone call 
from Coolidge querying him about one of the science articles. Ever so seldomly 
Coolidge would also consult Wilson about some science-directed bill that he 
was asked to sign. 

The broad subject from which this lecture will draw special topics, the role 
of mathematics in the social sciences, was one that especially interested Gibbs 
in his later years even though he did not make direct contributions to it 
himself. One of his last students was Irving Fisher who wrote, partly under 
Gibbs' direction, a Ph.D. thesis entitled Mathematical investigations in the 
theory of value and prices. To quote Fisher:1 

Professor Gibbs showed a lively interest in this youthful work and 
was especially interested in the fact that I had used geometric 
constructions and methods including his own vector notation. 

I recently turned to the April 1930 Bulletin of the American Mathematical 
Society to reread the Irving Fisher seventh Gibbs Lecture,1 The application of 
mathematics to the social sciences, dehvered to the Society on the 29th of 
December 1929, and I realized that a bit of trauma must have entered Fisher's 
life between the date he received the invitation to speak and the day of the 
lecture. Fisher was the chief academic spokesman for the wonders of the stock 
market boom of the late 20s. As one of the major academic economists and an 
eternal optimist, he was frequently invited to lecture to business and invest
ment groups on the future of the market and was much quoted in the 
newspapers and on the radio. His state of mind during the winter of 1929 may 
be deduced from three of the pronouncements that I extracted from John 
Galbraith's The Great Crash.2 

October 15th: 
"Stock prices have reached what looks like a permanently high 
plateau. I expect to see the market a good deal higher than it is 
today. . ." 

October 21st: 
"The decline represents only a shaking out of the lunatic 
fringe... the market has not yet reflected the beneficent effects of 
prohibition which has made the American worker more productive 
and dependable." 

TUESDAY, OCTOBER 29TH WAS THE WORST DAY IN TRADING HISTORY. 

November 3rd: 
"It was the Psychology of Panic. It was mob psychology and it was 
not primarily that the price level was unsoundly high. The fall of 
the market was very highly due to the psychology by which it went 
down because it went down." 
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The crash notwithstanding, Fisher's Gibbs Lecture was an excellent review 
of the history and the current status of attempts to apply mathematics to the 
social sciences; its published version may still be read with profit by those 
interested in the history of ideas and applied mathematics. 

In addition to reflecting Gibbs' late interests, I have also selected the subject 
of this lecture in partial response to a plea of the late President Handler of the 
National Academy of Sciences in his retiring presidential address of April, 
1981:3 

. . . what I would particularly like to direct to your attention is the 
pressing need... for the development of sophisticated analytical 
approaches to large sociotechnical systems. 

2. The entropy function in sociotechnical systems. A major contribution of 
Ludwig Boltzmann, who with Gibbs is considered a founding father of 
statistical mechanics, was the identification of a statistical construct with the 
thermodynamic entropy of a material system, the first example of such a 
system that he examined being a perfect gas4 (1877). His construct gave a 
measure of randomness or disorder in the system and allowed him to take the 
view that a complex system of atoms and molecules achieved as random a state 
as possible consistent with constraints introduced by conservation laws, i.e., 
conservation of numbers of particles and of the total energy of the system. 

Basically, the function that became ideal for this view was 

N 

(1) #=-£/>/ logƒ>, with/?, >0, 
i = i 

a function we shall call the entropy function. Usually the pt's are postulated to 
be normalized so that 

(2) E p, - I-
i - 1 

Frequently, the subscript i is identified with a possible state of a physical 
system, with the pt representing the probability that the system achieve the / th 
state. The fact that H measures the degree of randomness in a system may be 
seen by comparing its value for two extreme cases. If all states are equally 
likely, pt = 1/N of all i, a most random case 

(3a) # = logiV. 

The larger the N, the larger the entropy; i.e., the more random the system, the 
larger the entropy. In the most specified, least random case, the system is 
certainly in a single state, say the state j with probability 1 so that p- = 1 with 
all other pt being 0. Then 

(3b) H = 0. 

Thus absolute certainty has the minimum entropy. 
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The definition of H may be extended to the case that the states are 
represented by a continuous variable x. If x has the range -oo < x < oo then 
we define H as 

/
oo 

p(x)\ogp(x)dx, 

p(x) dx being the probability that the variate Hes between x and x + dx, with 

(4b) f ° p(x)dx = l. 
• ' - o o 

It is easy to show (and was already known to Boltzmann) that when the 
dispersion a of p(x), is given so that 

(5) a 2 = f ° x2p(x)dx = <x2>, 
• ' - o o 

the function that maximizes the entropy is the Gauss distribution 

(6) p(x) = (27ra2)~1/2exp(-jc2/2<r2) so that H = l oga (2^ ) 1 / 2 . 

The larger a, the larger H. When x is restricted to the positive half-line and the 
mean value of x is given by the value /A, 

/•OO 

(7) ju, = ƒ x/?(x)dx; == ( x ) , 

it can be shown that the distribution p(x) that maximizes the entropy is the 
exponential 

(8) p(x)=-n-1Qxp(-x/ix). 

Both the Gaussian and exponential distributions are basic in statistical 
mechanics. In the case of a perfect gas the kinetic energy, which is conserved in 
molecular collisions, is quadratic in the momentum. If the average value of the 
sum of the squares of the momentum is constant and the entropy function is 
maximized under this auxiliary condition, one obtains the Maxwell distribu
tion function for the moment or the velocity of an individual molecule. The 
canonical ensemble distribution of the energy of a system is the exponential. 

For seventy years the domain of the entropy function was restricted to the 
field of statistical mechanics and the applications of that subject to the 
physical sciences, until in 1948 Claude Shannon5 (36th Gibbs Lecturer), in 
elaborating on the pioneering work of Ralph Hartley and Harry Nyquist, 
identified the entropy function as an ideal measure of the information trans
ferred in communication systems. Thus the entropy function appeared in the 
characterization of the output of a sociotechnical system. 

Shannon observed that, if after long experience with message transfer 
through a communication channel incorporating a code that employs N 
symbols identified by j = 1,2,..., N, it is found that the jth symbol appeared 
with probability pj9 then the maximum information transfer rate becomes 

(9) H^-c^pjlogpj. 
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The constant c depends on the base of the logarithm and on the rate that the 
source device emits symbols. The information transmission rate may also be 
related to the continuum entropy when the message is propagated in a 
continuous wave form. Let W be the bandwidth of the transmitter. Then the 
message wave form may be Fourier analyzed as a linear combination of W 
harmonics. If an ensemble of continuous messages is coded so that the Fourier 
coefficients all have a Gauss distribution with a common dispersion, then the 
information transmission rate is proportional to H given in equation (6). This 
follows from the assertion following (5) concerning the Gauss distribution. 

Noisy circuits carry less information. If P is the signal power and N is the 
power of interfering Gaussian noise, then, as Shannon (equation (9)) showed, 
the information transfer rate is proportional to H = Wlog[l + (P/N)] = 
WP/N. The asymptotic form is valid when N » P, conforming to the 
engineers' rule of thumb that broad bandwidth circuits carry information at a 
higher rate and that a simple way to overcome noise is to enhance the signal. 

The communication systems considered by Shannon were composed of a 
message input element, a transmission channel, and a message output element. 
Since the entropy function appeared in a natural way for the information 
transfer rate in such a system, we might ask if the function could also be 
important in other sociotechnical systems that are composed of an analogous 
set of three components. 

A. ENTROPY FUNCTION IN A TRAFFIC STREAM.6 An example that immediately 
comes to mind is a highway transportation system that has an input provision 
for a vehicle and a road providing the channel for travel to an exit point. 
About twenty-five years ago, Robert Herman, the author, and colleagues at the 
General Motors Research Center performed car-following experiments and 
made numerous observations on flow on single-lane roads (and multilane 
highways under high-density conditions so that weaving from one lane to 
another was rare).7'9 I now show that an entropy function evolves naturally 
from the observed stimulus-response equation that describes the manner in 
which a car follows its predecessor in a platoon. 

Let us consider a platoon of N cars identified as n = 1,2,..., N flowing 
along a long, single-lane highway void of traffic signals. An equation found to 
describe with remarkable accuracy the response of a follower (identified by 
n + 1) to the behavior of a leader (identified by n) is7-10 

P.) ^ , ( . + A ) / « - ^ < ; > :*;*>} 

in which vn(t) is the velocity of car n at time t9 xn(t) is the location of the 
front end of that car at time t, and A is the time lag between the stimulus 
provided by the lead car and the response by the follower. The time lag A, 
which varies from person to person, is about 1.5 seconds. Equation (10) is a 
quantitative reflection of the fact that an (n + l)st driver accelerates when his 
relative speed is too slow and decelerates when it is too fast. When the driver 
he follows is far ahead of him, his response is not as sensitive as when close. 
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Integration of the stimulus-response equation (10) yields an equation of state 
for traffic, a relationship between vehicular flow rate and density in single-lane 
traffic.10,11 First we integrate (10) between tx and t2 to obtain, for all n, 

(11) \+i(h + A) - X0log [xn{t2) - xn+1(t2)] 

= vB+i(/i + A) - A0log [xM - xw+1(/1)] 

so that 

(12) vn+1(t + A) - X0log^w+1(0 = constant 

with 

(13) 4 , + i (0"*»(0-*»+i(0 
being the space available per car at the location between the nth and the 
(n + l)st cars at time t. The constancy of equation (12) is a consequence of the 
left-hand side of (11) being a function of only t2> and the right-hand side only 
of*!. 

The traffic density at the location of car «, pn(t), is the reciprocal of the 
space available per car: pn = l/dn = number of cars per unit length. In a 
freely moving stable stream of traffic, vn(t + A) with A « 1.5 sec is practically 
the same as vn(t) and (12) becomes (pc being the bumper-to-bumper close 
packing density at which v„ = 0) 

(14) v„(0 = - V o g k ( 0 / p J . 

The local traffic flow rate (dropping the explicit dependence upon time) is then 

(15) qn = Pnv„ = -KPXPJPC) log (P„ /P ) . 

Notice that 0 < pn/pc < 1 and that the dimensions of our variables might be 
cars per hour for q, cars per mile for p, and miles/hr for v. By averaging over 
JV cars in a Une of traffic, the mean flow rate is proportional to an entropy 
function in the variables (p„/pc),

6 

It is to be noted that the ratio pn/pc is not normalized since the sum over all 
Pn/Pc d°e s n o t have to be 1 or N. It is possible to construct a set of normalized 
pn by defining a mean density p by 

1 N 

(17a) p = -^ E Pn-
«-I 

Then the quantity pn = p„/pN is positive and has the property 

(17b) I ƒ>„ = !• 
« - 1 
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RELATIVE DENSITY, P/P0 

FIGURE 1. Variation of flow (cars per hour) with density. The points are 
taken from Lincoln Tunnel Data by H. Greenberg.12 The curve is determined 
from equation (18). 

The pn may be introduced into (16) to yield 

(18a) q = p\0log(pc/p) + p \ 0 l l o g - - £ A log ft J. 

The flow rate is a maximum at a given traffic density if all pn are identical so 
that Pn^ p and pn = 1/N. Then the term in the parenthesis in (18a) vanishes. 
However, if drivers behave differently from each other (as of course they do) so 
that some pn deviate from p, the entropy term in (18a) does not achieve its 
maximum value and the term in the parenthesis is negative, yielding a 
reduction in the flow rate q. 

If we set 

Pn** P + Ap„> 

substitute it into (18a), remembering that pn = pn/pN, and assume that Apw is 
small, then, since £ ApM = 0, 

(18b) = p\0log(pc/p) - - r ^ E (Ap„/p)2. 
IN 

The throughput q is plotted as a function of p in Figure 1, omitting the 
negative contribution of the fluctuation term in (18b). The points on the graph 
were obtained from observations of traffic flow in a large sample of more than 
24,000 vehicles in the Holland Tunnel in New York City.12 The value of X0 
that gave the best fit to the tunnel data was nineteen miles per hour. 

B. ENTROPY FUNCTION IN THE CATALOGUES OF SEARS, ROEBUCK AND 
COMPANY. A communication system is composed of a message input element, 
a channel for message propagation, and a message output element. A highway 
transportation system has an input provision for a traveler and a road 
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providing the channel for travel to an exit point. We have seen that the 
flow-through rate in each of these systems may be related to an entropy 
function. Another important sociotechnical system is the merchandising sys
tem. Goods flow into a warehouse or distribution center of the retailing firm, 
remain temporarily as an inventory, and finally are carried out by or delivered 
to the customer. Hence, a company's profit depends upon the flow-through 
rate of goods and on the price associated with the goods. The similarity 
between merchandising flows and the previous two examples suggests that the 
entropy function may appear in an analysis of that process. 

Further development of this idea requires merchandising data. Fortunately, 
Sears, Roebuck and Company (SR) has left us a rich legacy of information on 
this subject in its annual catalogues,13 which form a magnificent data base of 
Americana of the past eighty-five years. Prices listed in the catalogues were 
generally right for their times and the items listed reflect the public taste of the 
time. At first, through its mail-order operation, the firm made available to the 
farm family products found in cities of medium to large size; then it tried to 
compete with city merchants for the urban trade. The catalogues may be 
regarded as a merchandise model of a medium-sized city, listing available 
goods at reasonable prices. 

The preparation of the catalogues was a major concern of SR. Basically, 
each page was audited to produce its share of the profit. For example,14 in 
1930 the goals set ranged from $5,000 to $20,000 per page, depending upon the 
responsible merchandising department. Since the profit that year15 was 
$14,300,000 and the catalogues ran 1000 to 1500 pages, the profit per page 
averaged about $10,000. Expensive goods, properly illustrated, often attracted 
attention to pages containing cheaper bargain items. Many pages reserved a 
small space for the tentative introduction of new products. If the response was 
favorable, the allocation increased the next year. As annual sales of an item 
declined, its space allocation decreased: sometimes it even disappeared com
pletely from the catalogue. Various department heads, anxious for raises and 
promotions, were very competitive in the preparation of pages that listed items 
that were hoped to outsell those of their colleagues. 

Although the SR catalogues have been woven into the lives of millions, 
Robert Herman and I16 may have been the first to regard the lists of prices as 
a statistician's delight, to be exploited as a microcosm of the merchandising 
world. Motivated by reasons expressed in reference 16, we found the distri
bution function of prices by year listed in many of the catalogues. Since prices 
range from a few cents to hundreds of dollars, we "expanded" the scale of 
low-cost items and "contracted" that of higher-priced ones by recording the 
data as the logarithm of the price (to the base 2), log2P. Of course, we were 
aware (as many before us dating back to D. Bernoulli) that log P is psychologi
cally a more important variable than the price itself because one is especially 
sensitive to relative price changes, ( AP)/P ^ A log P. 

Examination of the price distribution from many catalogues indicates that, 
in a given catalogue, the distribution of log2Pt (Pt being the price of the z'th 
item) is very close to the normal distribution6. Three examples are shown in 
Figure 2.17 We also investigated the mean log2 P and the dispersion of log2 Pt. 
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FIGURE 2. Histogram of distribution of prices in Sears Roebuck catalogues 
for years 1916, 1924-25, and 1974-75. The fraction of items in each price 
range in each catalogue is plotted as a function of log2 P, P being the price 
[from ref. 17]. 

If N is the number of prices sampled, we define 

1 N 

(19) logP « <log2P) s ^ £ log2Pt, 
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(20) < ^ T 7 l ( l o g 2 i > , - < l o g 2 i > > ) 2 . 
ly 1 - 1 

The findings for these quantities for eighteen years appears in Table 1. 
The variation in (log2/*) over the years reflects changes in cost of living 

through the twentieth century. Catalogue prices changed in two manners: (i) 
by the change in price of an invariant item such as a clothespin, a 1910 
specimen being indistinguishable from one of 1940; and (ii) by the change in 
the nature of the item listed to reflect an evolving technology and a varying 
public taste. The 1910 bicycle was quite different from a 1970 model. The 1910 
buggy whip had disappeared from the catalogue and the CB transmitter was 
known only to science fiction writers in 1925. Many interesting deductions 
follow from changes in (log2i

>>,16 but it is upon the third and sixth columns, 
aiog /» °f Table 1 that I wish to direct attention. 

Year0 

1900 

1902 

1908 

1916 

1924-25 

1929-30 

1932-33 

1934-35 

1935-36 

<log2/>> 

0.150 

0.212 

-0.0228 

-0.068 

0.422 

0.998 

0.691 

0.673 

0.537 

O 

2.43 

2.34 

2.29 

2.38 

2.32 

2.26 

1.91 

2.22 

2.39 

Yeara 

1939-40 

1946-47 

1948-49 

1951-52 

1962 

1972-73 

1973-74 

1974-75 

1975-76 

<log2/>> 

0.627 

0.532 

1.336 

1.785 

2.403 

3.030 

3.322 

3.870 

4.060 

a 

2.62 

2.15 

2.37 

2.34 

2.24 

2.27 

2.05 

2.12 

2.03 

TABLE 1. Standard deviation of log2 P from mean (log2 P) for various years 
in the period 1900-1976. ö = 2.26; <(a - â2))1 / 2 - 0.17. 
aAn entry identified by a single year corresponds to a spring-summer 
catalogue; an entry identified by a number such as "1924-25" corresponds to 
a winter catalogue. 

As one superficially scans successive catalogues, one is impressed with the 
tremendous variety of articles available and the steady change from year to 
year. We have been as much impressed by the existence of an almost invariant 
statistical quality—an "economic constant of the motion"—for the marketing 
operation. It is remarkable that, for more than seventy-five years, the disper
sion alogP (defined by equation (20)) has hardly changed. The average value of 
alog/> is 2.26 with ((a - â)2)1/2 = 0.17. Table 1 shows the largest observed 
deviation of alog/> from 2.26 to be 1.91, in the 1932-33 winter catalogue, at the 
depth of the Great Depression. That catalogue contained a statement to the 
effect that, because of the high cost of catalogue production and somewhat 
reduced demand for high-priced furniture, the furniture listing is meager. A 
separate furniture catalogue was available upon request. The combination of 
the regular 1932-33 catalogue with the furniture catalogue would lead to a 
ak>g/> value closer to 2.26. 
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Having observed the consistency of a, let us construct a simple inflation 
model to "explain" it. Suppose that, in a given year, all prices are changed by 
the same factor, a. Then the transition experienced by the price of the «th 
catalogue item in that year would be P, -> aPt so that the transition of log2 P, 
would be log2P, -> log2P, + log2a and the difference [log2P, - (log2P>] 
would remain invariant because the a-dependent contributions of each term 
cancel. On this basis, alogP defined by (20) remains invariant under the 
constant-inflation-factor postulate. 

The inflation model may be made more realistic by assuming that the z'th 
item has its own inflation factor at expressed as an average inflation factor 
plus a small correction Aa,; at — a + Aa, with (Aa,) = 0. Then, to first order 
in ( Aa/a) , log Pt in one year is transformed in the next to 

log ô P, « logP, 4- log a +(AalV/a). 

Hence, to the first order, 

1 N 1 

/* — 1 i 

and 

(21) «,2ogP -» a£g P + 1 £ (log.P, - log2?)(Aa,/a) + ^ £ (Aa,/a)2. 

In a year with a mean inflation rate of 10%, a = 1.1. A reasonable range for 
Aa, might be -0.1 < Aa, < 0.1, yielding the range -0.09 < Aa/a < 0.09, so 
that typically (Aa/a) 2 « 0.01. When the inflation rate is independent of the 
price of the item, the cross term of first order in Aa,/a in (21) vanishes. 
However, when the inflation rate for low-priced items is generally higher than 
that for higher-priced ones (a common situation), the middle term in (21) 
becomes negative and cancels the positive last term. Without that influence, a2 

grows each year. 
The constancy of a2 combined with the discussion following (5) implies that 

the normal distribution of logPz maximizes the entropy function associated 
with that variable. Hence, in their marketing wisdom, Sears, Rosenwald, their 
staff, and their successors, created catalogues with goods priced so that year 
after year the price distribution maximized the entropy function associated 
with log Pt. 

The entropy function itself, defined by (4a), for a log-normal distribution 
function has the form 

H=-f [log(P/P)]2p(loëP/P)d[log(P/P)], 

where p(x) is the normal distribution function defined by (6). Log P/P is 
similar to the utility function of classical economics, originally used by 
Bernoulli in his analysis of the St. Petersburg gambling paradox. The H is the 
weighted average of the square of the function resembling the utility function. 
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FIGURE 3. (a) Time variation of the logarithm to the base 2 of the average 
price in dollars of items found in general SR catalogues. Also shown are time 
variation of the log of average wholesale automobile prices in dollars and the 
log of U. S. Department of Labor consumer price index for the period from 
1900 to 1975.18 (b) The recent decline in the price of computation.20 

Many other quantitative conclusions may be drawn from SR catalogues. 
One of interest to academics was especially noted by Cohn.14 In 1905, guitars 
enjoyed as great a popularity as they again did in the 1960s. Among the many 
styles available that year was the college name group. Cohn wrote: 

. . . o n e wonders whether the head of Sears' music department, 
when he priced and named his guitars, was not at the same time 
passing judgment upon the merits of the universities according to 
some secret or unconscious criteria of his own. 

Note the valuations: 

The Stanford 
The Cambridge 
The Cornell 

$4.25 
$8.95 
$11.35 

The Princeton 
The Yale 
The Harvard 

$13.75 
$16.95 
$21.45 
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The items in a Sears Roebuck catalogue are products of an extensive and 
diverse technological network. Hence, the annual variation in the mean price 
represents an average over numerous technologies. On this basis one might 
determine whether a given technology is evolving well or poorly relative to 
other technologies by comparing price variation of its typical products with the 
SR mean price variation. 

As an example we have plotted in Figure 3a18 the average factory sale price 
to automobile dealers in the United States in the period 1900-1975 as obtained 
from Automobile Facts and Figures, 1967 and 1975 editions.19 Notice the rapid 
drop in prices from 1908 until 1917, the period of dramatic evolution of the 
motor car from a basket on wheels to a modern vehicle. The trend in auto 
prices relative to the SR index continued to fall until about 1935. Since then 
wholesale automobile prices have paralleled the SR index. By the 1930s 
innovations in production line operation and in marketing pioneered by the 
auto industry were adopted by most other producers. Furthermore, a modern 
automobile, being a conglomeration of steel, glass, upholstery, electric gadgets, 
etc., is itself a small "Sears Roebuck Catalogue" of items. 

The computer industry with its ingenious integrated circuit technology has 
produced superior devices at declining prices even in times of abnormally high 
inflation. We have, in the lower part of Figure 3b, included the variation in 
cost of making a specified calculation in different machines over the past 
twenty years as advertised by IBM in a recent issue of Scientific American.20 If 
this data were put on the upper part of Figure 3 it would indicate that the cost 
reduction rate of computation parallels that of the automobile during its most 
dramatic period, circa 1910. When computation prices finally parallel the SR 
index, the most innovative period of computation development will be over. In 
Figure 4 the price of eggs is shown to have been almost constant for many 
years, while university tuition has increased more rapidly than the SR index. 
Poultry culture becomes ever more automated. Professors have not become 
more efficient operators. Furthermore, through federal pressure and their own 
motivation, university administrations expand more rapidly than teaching 
staffs. Hence, as with practically all personal service activities, costs escalate 
more rapidly than those of most factory-made products. 

C. O N INCOME DISTRIBUTION. We have seen that money is spent on items 
whose prices have a log-normal distribution and that entropy has been 
maximized in a peculiar way in the distribution process. It would be interesting 
to explore the possibility that a symmetry exists between the manner in which 
money is made and the manner in which it is spent. We show in this section 
that over the first ninety-nine percentile of the U. S. population the distribu
tion of annual incomes is log-normal and that there is an entropy principle 
analogous to that observed for Sears Roebuck prices. We start our discussion 
with some general remarks on the income distribution. 

It is commonly observed that, over a large range of an independent variable, 
distributions might be of a standard type such as normal or log-normal but 
then suffer a transition in the last few percentile of a population into an 
inverse power law. This transition is analyzed here through a special example, 
the U. S. annual income distribution. That distribution is plotted in Figure 5 
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FIGURE 4. Comparison of time variation of egg prices, university tuition, and 
SR price index. 

for the period 1935-36 on log-normal graph paper.21 On such graph paper a 
cumulative log-normal distribution would be a straight Une. That is the case for 
the first 98-99 percentile; however, afterwards a transition to a Pareto inverse 
power-law distribution occurs. One of the earliest observers of the log-normal 
distribution of incomes was R. Gibret.22 More recent critical examination of 
the fitting of the log-normal distribution to data is given in references 23 and 
24. Badger21 has given a useful summary of the application of various 
statistical distribution functions to income data. 

We now indicate how the log-normal distribution might be interpreted in 
terms of a maximum entropy strategy. Then we suggest a model to "describe" 
the transition to the Pareto form. 

Through various transactions, money is transferred from individual to 
individual in a manner analogous to the transfer of energy from gas molecule 
to gas molecule through collisions. By transfer of goods or services (or welfare 
or charity), every family has someone with an annual income. One might argue 
that the many transactions cause money to become randomly distributed but, 
through various constraints due to training, motivation, risk-taking, inheri
tance, luck, intimidation, skill, etc., some people obtain larger annual incomes 
than others. We will still apply the entropy principle, but at first without any 
clear understanding of the constraint that implies the observed distribution. 
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FIGURE 5. Distribution of families and single individuals by income level, 
1935/1936. Data are from reference 25. Most of the data follow a log-normal 
distribution, while the last 1% is governed by a Pareto tail. 

Let us suppose that the distribution of annual incomes is log-normal, as 
indicated in Figure 5. Then the probability that one's annual income lies 
between x and x + dx is 

(22) (27ra2r/zexp -
(log[s/x]) \ dx 

2a2 
= p{x)dx. 

The factor dx/x is exactly the variation of the Bernoulli utility function U(x) 
defined so that26 

(23) dU « dx/x. 

The classical significance of this form is that a process involving a transfer of 
money dx has a different meaning to persons of different levels of income. 
Transactions made by persons of different income levels might be more 
equivalent if they involved the same fraction of the income of the participants. 
Hence, according to D. Bernoulli, the basic function which determines one's 
course of action is the utility function 

(24) £/(*) = log (x /x ) . 
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Quintiles 

Lowest 

Second 

Third 

Fourth 

Highest 

Total 

Top 5% 

1944 

4.9 

10.9 

16.2 

22.2 

45.8 

100.0 

20.7 

1947 

5.0 

11.0 

16.0 

22.0 

46.0 

100.0 

20.9 

1950 

4.8 

10.9 

16.1 

22.1 

46.1 

100.0 

21.4 

1951 

5.0 

11.3 

16.5 

22.3 

44.9 

100.0 

20.7 

1954 

4.8 

11.1 

16.4 

22.5 

45.2 

100.0 

20.3 

1956 

4.8 

11.3 

16.3 

22.3 

45.3 

100.0 

20.3 

1959 

4.6 

10.9 

16.3 

22.6 

45.6 

100.0 

20.3 

1962 

4.6 ' 

10.9 

16.3 

22.7 

45.5 

100.0 

19.6 

TABLE 2. Percent distribution of family personal income by quintiles and top 
five percent of consumer units for selected years (data from ref. 21) 

Notice that with U considered to be the basic function of our process the 
normal distribution of U would follow from the maximization of an entropy 
function21,27 

(25) H=-f p{U)\ogp(U)dU 

under the auxiliary condition p(U) being normalized and 

(26) (U2) = ƒ U2p(U) dU = constant. 

That the integral of U2 is essentially constant over a long time interval is 
apparent from the data in Table 2. We may write 

(27) ƒ U2p(U) dU = ƒ (\ogx/x)2p(logx/x)(x/x) d{x/x). 

From Table 2, the fraction of the national family income in a given population 
quintile remained almost constant over the period of eighteen years of the 
selected data. The mean income shifted, generally going to a higher level, but 
relative to the mean the distribution in a given interval remained invariant. 
Hence in the transition from one year to another incomes would have suffered 
an annual inflation factor (or deflation factor) a so that 

x -> ax, x -> ax and x/x -> ax/ax — x/x 

but yet (27) would have remained invariant. This is a consequence of there 
being no basic scale in the process. 

The above analysis is interesting; however, it gives us no insight into the 
appearance of the Pareto inverse power law tail beyond the 99 percentile in 
Figure 5. No one would dispute the fact that the wealthy differ from the lower 
99% in the manner that they accumulate income. While most people are paid 
by the hour, or the number of widgets they produce, the wealthy frequently 
accumulate their extra wealth by some amplification process; that process 
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varying from case to case. At the height of the Beatles' popularity any new 
recording by them was purchased by millions of fans. The leverage people in 
the investment business have their style of amplification. During certain 
periods of prosperity easy money becomes available for investment, sometimes 
in stock, sometimes in real estate, or perhaps in silver or Rembrandts. A 
common characteristic of such times is that the daring may exploit the easy 
money to acquire some speculative commodity through a small margin pay
ment, say ten percent, with a promise to pay the remainder later. If the 
commodity doubles in price a ten-percent margin payment is amplified into a 
ninefold profit. J. P. Morgan was given his first million by his father. He 
invested a considerable fraction of that in the manner described above, 
reinvesting the profit, and so on, to become much richer than he would have 
had he accepted the offer of a privatdozentship in mathematics at Göttingen 
University offered to him by Felix Klein. Perhaps one of the most common 
lower-level modes of amplification is for an individual to organize an operation 
with others working for him so that his income is amplified through the efforts 
of others (a modest-sized business, for example). 

We now introduce a model to indicate how Pareto-Lévy tails may be derived 
from a log-normal distribution (or indeed from any one of a broad class of 
distributions with second moments) by accounting for the process of amplifica
tion, by the amplification of amplifications, etc.28 Let g(x/x) denote the basic 
distribution written in terms of the dimensionless quantity x/x9 x being the 
mean value of the observed x if the tail of the distribution is neglected. With a 
small probability, X, suppose that in the new amplifier class one has the same 
distribution function g that is natural for the process but that x is amplified to 
Nx. In the second stage of amplification, which we postulate to occur with a 
probability X2, the mean value of x becomes N2x. The new distribution G(y) 
(with y = x/x) that allows for the possibility of continuing levels of amplifica
tion is 

(28) G(y) = (1 - X) g(y) + jfg(y/N) + jiê(y/N2) + 

where X is a parameter that determines the range of the initial distribution 
g(y). The factor (1 - X) is introduced to ensure the proper normalization of 
G(y). It is easy to see that by replacing y by y/N in (28) that 

(29) G(y)-j;G(y/N)+(l-\)g(y). 

The determination of the complete solution of our inhomogeneous scaling 
formula (29) is rather complex but it is easy to obtain our desired asymptotic 
properties of G(y). First suppose X -> 0. Then there is no amplifier class in 
the population and G(y) becomes the same as g(y). If X is small, say 0.01, 
and N is about 10 then G(y) is still close to g(y) since the first term in (29) 
may be neglected. However, when y becomes large g(y) -* 0. Let us suppose 
this decay is faster than that of G(y). Then the asymptotic form of G(y) is 
determined by the simpler scaling formula 

G(y) = (X/N)G(y/N). 
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If we suppose that G (y) = Ay l M, then direct substitution yields 

(30) M = log(l/\)/ logJV. 

Thus the Pareto exponent appears as a fractional dimension. The evaluation of 
A requires a more subtle analysis since in general it may be periodic in log X 
with period log N. 

The best value of /x to fit the tail of the 1935-36 data was found by Badger21 

to be 1.63. If we put the probability of being in the special amplifier class as 
\ = 0.01 the average amplification factor N would be about 16.8. This number 
is not surprising since one of the most common modes of significant income 
amplification is to organize a modest-sized business with the order of 15-20 
employees. 

3. On the dynamics of technological evolution. 
A. EVOLUTION AS A SEQUENCE OF REPLACEMENTS. We have found that in the 

description of certain sociotechnical systems the entropy function plays an 
important role. In all of the systems discussed a considerable degree of 
sophistication has evolved over many years of experience. In this section we 
consider the manner in which technological systems evolve. 

1860 

1865 

1870 

1875 

1 1880 

1885 

1890 

1895 

1.30 

1.00 

1.49 

1.60 

1.78 

2.17 

2.28 

2.63 

1900 

1905 

1910 

1915 

1920 

1925 

1930 

1935 

2.48 

2.47 

2.04 

2.34 

2.55 
3.41 

4.35 

4.83 

1940 

1945 

1950 

1955 

1960 

1965 

1970 

1975 

6.78 

5.53 

5.96 

8.13 

10.00 1 

11.53 

12.62 

10.50 

TABLE 3. Index of ratio of industrial daily wage to wholesale farm price index 
1860-1975 (Ratio: 1865 = 1.00; data from ref. 29) 

Lifestyles in modern society are ever changing. Indeed, such has been the 
case in most societies—the changes at some times being more rapid than 
others. An evolving technology has, for several hundred years, been an 
effective driving force for change influencing numerous components of our 
lifestyles, such as our diet, our ease of travel, the duration of the workday, the 
nature of available goods, and our life expectancy. In this section we char
acterize an evolving technology (and society) as a sequence of replacements. A 
remarkable feature of such a technology is its autocatalytic nature, each 
innovation catalyzing the generation of the next. 

Affluence might be measured in terms of the amount of goods purchasable 
by a typical worker for a day's wage. As a first example of the effect of 
technological development on affluence in the United States in the past 
hundred years, we list in Table 3 the ratio of the index of the industrial daily 
wage to the wholesale farm price index for the period 1860-1975 (with the 
ratio for 1865 being equal to one). The data was obtained from reference 29 
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Wheat 
! Man-hours per acre 

Yield per acre, bu. 
Man-hours per 100 bu. 

Corn 
Man-hours per acre 
Yield per acre, bu. 
Man-hours per 100 bu. 

Cotton 
Man-hours per acre 
Yield of lint per acre 

in lbs. 
Man-hours per bale 

1800 1840 1880 1900 1920 1940 i960 

56 
15 
373 

86 
25 
344 

185 

147 
601 

35 
15 
233 

69 
25 
276 

135 

147 
439 

20 
13.2 
152 

46 
25.6 
180 

119 

179 
318 

15 
13.9 
108 

38 
25.9 
147 

112 

191 
280 

12 
13.8 
87 

32 
28.4 
113 

90 

160 
269 

7.5 
15.9 
47 

25 
30.3 
83 

98 

245 
191 

3.1 
24,9 
12 

7.9 1 
56.9 
14 

54 

454 
57 

TABLE 4. Productivity of workers in wheat, corn, and cotton culture in the 
United States (data from ref. 29) 

[Tables E-l through E-41, D-574, D-590, and D-626, and in annual "Statistical 
Abstracts": reference 30 (since 1955)]. The farm price data corresponds to the 
same mix of produce for each year of data recorded. The increase in the index 
by an order of magnitude is the result of improved agricultural efficiency and 
of the increased productivity of a typical nonagricultural worker so that he can 
command a higher wage. 

In Table 4 we have recorded improved agricultural yields in wheat, corn, 
and cotton since 1800. This spectacular development of agricultural technology 
is the result of proper choice and use of fertilizer, research in plant genetics, 
mechanization, improved soil management, irrigation, and other factors. Mod
ern agricultural evolution has been a continuing replacement of one technique 
or plant strain by another. 

A second example of the influence of technology on affluence is the increase 
over the years of the distance a typical worker can travel on a day's wage. 
Roman data (circa 300 A.D.) is available from Diocletian's wage and price 
control ordinance.27,31 An unskilled workman could travel about eleven miles 
on a day's wage, while a carpenter or stone mason could do double that 
distance. There was no improvement for the next 1,500 years. In England in 
1790 the stagecoach fare from Manchester to London (195 miles) was £2/5 or 
four miles to the shilling.32 A laborer then made 14d per day, giving him 
slightly more than a four mile deluxe ride. By renting a horse he could do 
about as well as the Romans did. A coal miner at 7d per day did not do so 
well, but a foreman at 21d per day32 could travel commercially about seven 
miles on a day's wages. While the coaches were the best vehicles available, they 
did shake the passenger a bit. In New England the tavern density was one per 
linear mile to ease the traveler of his pain. 

The 1795 stagecoach fare from New York to Georgetown (Washington, 
D. C, did not yet exist) was $16 for three stages: New York to Philadelphia 
($6), Philadelphia to Baltimore ($6), Baltimore to Georgetown ($4). This is to 
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be compared with the 1983 bus fare of $22.50 (on the basis of $45 for the 
round trip) for a smoother four and a half hour ride, warmer in the winter and 
cooler in the summer. Typical colonial stagecoach fares in nonmountainous, 
well-settled regions ranged from five to seven cents per mile, rising to ten cents 
per mile in wilder parts of the country. The government travel allowance was 
fourteen cents per mile in 1815; today it is twenty. It is clear that if a poor man 
needed to take a long trip he probably walked. Those slightly better off might 
own a horse, but only the rich could afford commercial vehicles. Ocean travel 
was also expensive. An Englishman without funds who wished to try his luck 
in the colonies had to indenture himself for seven years (about one-third of his 
remaining life expectancy at age twenty) to pay for his boat ride. 

The first technological breakthrough to broaden the modern worker's travel 
horizon on a day's wage beyond that of the Romans was the construction of 
canals. When the Duke of Bridgewater's canal32 was completed in 1765, the 
price of transport of £5 per ton from Liverpool to Birmingham was reduced to 
£1/10. 

The canals were a basic component in the birth of the industrial revolution. 
The early steam engine provided the motor power to make possible the cheap 
mass production of simple objects. However, mass production is meaningless 
without mass markets. Before canals, transport costs were frequently greater 
than production costs, so that a change in production cost had only a 
second-order effect on the price at a distant market. The canals at low cost 
carried coal and raw materials for fabrication to the industrial centers and then 
cheaply delivered finished products to distant markets. By 1810, hardly any 
significant English town was more than ten miles from a canal. 

The most drastic change in price, trip time, and comfort came with the 
railroads which replaced the canals. The railroad fare in the period 1890-1915 
was about two cents per mile. Hence, on the $5 a day that Henry Ford offered 
his workers, they could travel 250 miles. An autoworker in 1978 made about 
$20,000 a year and a coal miner about $25-30,000 a year. This corresponded 
to a range of about $100 a day. In 1978, at regular airfare of about seven cents 
a mile, a trip of almost 1,500 miles was possible by air. (The lower bus fare 
permitted 3,000 miles.) With careful planning, taking advantage of the old 
Texas International's $99 flights from Los Angeles to New York, or Freddie 
Laker's special transatlantic rates, a skilled industrial worker could then fly 
3,000 miles on a day's wage. His poorer brother who got along on the 
minimum wage ($3 an hour) could still travel about 750 miles by bus, a factor 
of 75 times better then the old Roman and three times better than Henry 
Ford's employees. Since we did not base our calculation on wages after taxes, 
the above numbers are somewhat exaggerated. On the other hand, if our 
typical worker wished to drive a car with mama and the two kids, more 
passenger miles might be possible on a day's wage. 

We have asserted that technological and social evolution is a consequence of 
a sequence of replacements of one technique (or idea, tradition, or artifact) by 
another. This statement is in the Darwinian spirit of survival of the fittest, with 
each new mutant or species struggling to find its niche, sometimes at the 
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expense of displacing or replacing the older forms. Once a virile mutant or new 
form established itself, it would be expected to propagate, continuing to 
replace its competitors until it reached an equilibrium saturation level. 

A simple mathematical model of growth to saturation is the logistic model, 
introduced by Verhuist33 in an investigation of the population expansion of 
nations. Let n = n{t) be the population of a given species at time t. Then, with 
saturation level 0, the model is characterized by the growth equation: 

(31) dn/dt = kn[l - ( * / » ) ] , 

k being a rate constant (to be determined empirically). If we let x = n/8 be 
the fraction of the way to saturation, and y = l/x, then 

(32) -d(y - \)/dt - k(y - 1) 

so that 

y - l = [y(0)-l]cxp(-kt); 

or, with x0 = x(0% 

(33) log [x/(l - x)] = log [x0/(l - x0)] + kt. 

This formula suggests that to test the logistic model for a particular case one 
should plot the relevant data in the form x/(l - x) on semi-log graph paper 
as a function of the time and observe whether the points lie on the required 
straight line. 

J. Fisher and R. Pry34 have successfully exploited the logistic model to 
describe the market penetration of many new products and technologies. If a 
superior new product or process excites the trade sufficiently to absorb 
10-15% of the market, it is highly likely that it will win an increasingly larger 
fraction until it completely dominates the market or until its own new 
competitor appears. In the logistic replacement model, x/(l - x) represents 
the ratio of the fraction of the market captured by the new to that remaining 
for the old. We have reproduced in Figure 6 the remarkable logistic fit 
published by Fisher and Pry for several industrial replacements. These authors 
have produced many other equally impressive graphs for other technologies. 

C. Marchetti and N. Nakicenovic35 have given an excellent summary of 
world energy usage and source substitution by employing the logistic model as 
shown in Figure 7. There one sees the replacement of wood by coal and coal by 
oil. Natural gas seems to be on the road to becoming the primary oil substitute. 

R. Herman and the author36 have shown that as basic an evolutionary 
process as the industrial revolution may also be modeled by logistic dynamics. 
As the industrial revolution evolved, the fraction of the labor force in agricul
ture declined while the fraction in industry grew. 

Before 1840 the ratio of nonagricultural workers to agricultural workers in 
the labor force of the United States remained fairly constant over many 
decades. The ratio of the fraction of nonagricultural workers to agricultural 
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workers in the United States is plotted as a function of time in Figure 8 on 
semi-log graph paper (as is the corresponding fraction for Sweden). The U. S. 
data was obtained from the U. S. Bureau of the Census, Statistical Abstracts of 
the United States. It is remarkable how well the data fits the straight line 
defined by the logistic equation for a period of about one hundred years. 

The rate at which agricultural workers left the farms in the early 1940s 
exceeded that expected on the basis of the logistic equation. The acceleration 
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FIGURE 6. Substitution data and fit to model for a number of products and 
processes: all data are for the U. S. except where indicated.34 
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YEARS 

2000 2050 

FIGURE 7. The logistic curves appear as straight lines, from which we see that 
it takes about 100 years to go from 1 percent to 50 percent of the market. 
Also we see that all perturbations are reabsorbed elastically without 
influencing the trend. 
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FIGURE 9. Manner in which intercity passenger travel by rail has been 
replaced by air travel.37 

was a response to a force generated by telegrams from President Franklin 
Roosevelt that started with the word "Greetings." After World War II many of 
the young men who responded to the greetings did not return to the farm. The 
curve for x/(l - x) (nonagricultural to agricultural worker ratio) for Sweden 
follows that of the United States. While the young Swedish farmer did not 
receive a greetings telegram, he was enticed to relocate by the higher wages 
paid by companies that were selling factory products to pleading customers 
around the world. 

Even when the logistic form of the replacement model is violated one may 
still expand his intuition on replacement dynamics through the understanding 
of the cause of the violation. In Figure 9 we sketch the replacement pattern of 
rail by air in intercity passenger travel in the United States. In the figure37 

/ - ^ annual air passenger miles 
annual air and rail passenger miles ' 

Notice that in the period 1947-1959 the data are in accord with equation (33). 
The deterrence in replacement evolution during 1960-1961 seems to have been 
the result of several unusually long strikes by airline workers and of the 
public's response to a series of serious and unusual airplane accidents. By 1962, 
the system recovered and the replacement curve continued with its old slope 
until the late 1960s. Then, accelerated replacement to the end of the decade 

I N I | I I M | I I M | M M | M I I | I I I I | I I I I 

X=1/2 
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occurred at the time the largest rail passenger carrier, the Penn-Central Une, 
was suffering through its prebankruptcy and bankruptcy. The management of 
passenger rail service was reorganized in the 1970s by Amtrak. 

The role of intercity buses was omitted from the above discussion, because 
the fraction of total passenger traffic maintained by them changed very little 
during the period investigated. 

Year 

1840 
1845 
1850 
1855 
1860 

Gross Tonnage, Tons x 10 | 
Steam 

202 
326 
526 
770 
868 

Sail 

1978 
2091 
3010 
4442 
4480 

TABLE 5. Gross tonnage according to type in United States merchant fleet 
(data from ref. 30) 

The replacement of sail by steam in the U. S. Merchant Marine in the 
nineteenth century followed a similar pattern.37 Practical steamship operations 
started in the 1820s, and during the two decades 1830-1850 the logarithm of 
the fraction of tonnage in steamers to that in sailing ships followed a logistic 
straight line, as it did again during the interval 1880-1915. 

At first, steamboats appeared in the river traffic and then in coastal 
waterways; later they operated on transatlantic runs, but only after the Civil 
War could they successfully compete with the clipper ships on the longer 
Pacific passages and on the voyages around the Horn connecting the East 
Coast with San Francisco. 

The first fast cüpper ships appeared in the 1830s, when steamboats were 
becoming numerous. They were built in large numbers during the decade 
1845-1855 (peaking between 1850 and 1853). Two important events of 1849 
stimulated their production, perturbing the takeover by steam: discovery of 
gold in California and repeal of the British Navigation Acts and the breaking 
of the China trade monopoly long enjoyed by the British merchant marine. 
The expansion of trade in the West Coast, the Orient, and Australia by 
adventurous American skippers created an enormous demand for the speedy 
clippers, as indicated in Table 5. 

A financial slump in 1854 essentially stopped clipper ship construction, and 
during the panic of 1857 practically all types of construction were terminated. 

Steamboat construction was favored over sail for the increased local trans
port required by the Civil War. The considerably improved steamboat models 
dominated naval construction in the postwar reconstruction period 1865-1873 
only to be abated by the panic of 1873 whose effects persisted for several years 
[see Figure 10]. With the return to normal, the steamboat replacement curve 
proceeded along its logistic course until 1915 when the shipping requirements 
of World War I stimulated an accelerated naval construction program. By 
then, no one considered new sailing vessels to be suitable for commercial 
shipping. 
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FIGURE 10. Manner of replacement of sailing ships by steamships in the U. S. 
merchant fleet.37 

A remarkable feature of the last two examples is that after an intermittent 
deterring force has been lifted from a logistic process, the process is restored 
with its original rate constant. 

Marchetti has found another surprising application of the logistic model, 
namely to the evolution of the efficiency of technical devices and processes. 
Some of his findings are summarized in Figure 11, where data is plotted for 
efficiency of the steam engine, of lamps, and finally of ammonia production. 
He said: 

In a sense inventors, wandering in the world of all possible ma
chines, picked the ones that looked best, ready to throw them away 
for the next better ones like Alice in Wonderland with her flowers. 
Here only one parameter was taken as an indicator of performance, 
but a very important and subtle one: thermodynamic efficiency. 
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FIGURE 11. Historical trends in efficiency (A^_50% is time necessary to 
evolve from 1% to 50% efficiency; e is second law efficiency.) 

B. CRITICAL POINTS AND "PHASE TRANSITIONS" IN TECHNOLOGICAL EVOLU

TION. When a device, developed to perform an important function, enjoys a 
considerable and growing market penetration, its own success generates a 
demand pressure for its further improvement. Owners of a fast boat want a 
faster boat. Users of programmable pocket computers capable of performing 
forty-step operations cry for one to perform eighty-step operations. 

As the demand for improved performance grows, some natural limitation in 
the basic device technology becomes apparent, causing improvements to be
come increasingly expensive, and thus motivating the search for alternative 
technologies to meet the demand. We shall see that production and operating 
accidents also grow, as well as normal operating and development costs, when 
these natural limits are approached. The main purpose of this section is to 
exhibit several relationships between physical laws and technological transi
tions (and therefore technological evolution). The first example to be consid
ered is a ship of a given class operating on a calm sea surface. As the velocity 
of the ship increases, it is subjected to an increased resistance by the water, 
thus requiring more power. Figure 12 represents a typical operating curve of 
resistance per ton of displacement plotted as a function of V/L1/2

9 V being 
the velocity and L the length of the ship. This is effectively F1/2

9 with 
F = V2/Lg being the Froude number of the ship motion. At high velocities 
resistance is associated with the formation of the bow wave. All displacement 
ships generate a bow wave whose amplitude and wavelength increase with the 
velocity. The larger the amplitude the greater the fraction of the ship's power 
converted to raising water vertically to a bow wave rather than in the 
horizontal propulsion of the vessel. When the velocity (in knots) reaches 
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FIGURE 12. Resistance versus V/Ll/2 in a characteristic speed-power curve 
for a displacement ship: Note the ship-wave profiles.38 

0.6L1/2 (again the length in feet), there are about two and a half bow waves 
per hull length. Finally, at the critical speed V0 = 1.3L1/2 the wavelength of the 
bow wave becomes equal to the length of the hull.38 Since the upper crest of 
the wave is aft of the bow and the lower crest fore of the stern, the ship is 
effectively going uphill upon the achievement of the critical speed. To remain 
in this tipped configuration a ship then requires considerable more propulsion 
power than one moving horizontally at low speeds. A 750-foot hull has the 
critical speed of 35.6 knots; for a 1,000-foot one, it is about 41 knots. 
Therefore it becomes very expensive to operate a large ship whose crusing 
speed exceeds 35 to 40 knots. One motivation for increasing the size of oil 
tankers is that the longer the tanker, the greater will be the critical speed. 

If one wishes to overcome the bow wave limitation with a sea-going vessel, 
he must find a scheme to eliminate the bow wave. This indeed has been 
accomplished through the invention of hydrofoils and planing ships, with the 
ship essentially flying as it skips over the water. In this new mode of operation 
the resistance drops to the level indicated on the dashed curve of Figure 13. 
Thus, one finds a X form of the specific power curve as he passes through the 
transition. The curve in Figure 13 is analogous to the heat capacity curve of a 
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FIGURE 14. Heat capacity versus temperature of CuZn (/?-brass) alloy.39 

solid characterized by several types of internal degrees of freedom (as is the 
case in magnetic materials, binary alloys, liquid helium, etc., see Figure 14).39 

By definition, the heat capacity of a material is 
C = dE/dT, 

the amount of energy required to raise the temperature of the material one 
degree Kelvin. As a critical point is reached more energy is needed to raise the 
temperature one degree. In the case of a /}-brass (50% Cu, 50% Zn) the alloy is 
completely ordered at low temperatures as a periodic simple cubic lattice of 
alternating Cu and Zn atoms. As the critical temperature is approached the 
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FIGURE 15. Drag coefficient CD of a wing section at a constant angle of 
attack through the transonic range as a function of the Mach number M. 

arrangement of Cu and Zn atoms becomes randomized with a certain amount 
of energy being used in randomizing the system rather than raising the 
temperature. This is analogous to the energy used by a ship to develop the bow 
wave, energy then not available for propulsion. 

The operating curves in Figure 12 and 13 refer to normal operating condi
tions, that is, for a ship in a calm sea. When a ship operates near its natural 
limit in the presence of the fluctuations common to a rough sea with high 
waves, an extra operating cost is added in the form of ship damage. At high 
speed in a rough sea while the ship is tipped at the normal angle with its bow 
wave, interference with a natural wave of the opposite phase may leave the 
bow unsupported in mid-air so that it "slams." A continuing sequence of slams 
shakes the crew and damages the ship. 

The transition from the subsonic flight regime to supersonic also follows a 
X-like variation40 in the drag coefficient, as evident in Figure 15, the peak 
appearing slightly above Mach 1. 

Basic limitations in successive stages in the evolution of computer technol
ogy arose from demands for speed and storage capacity. The first automatic 
programmable digital computers were conceived of independently by Howard 
Aiken (Harvard) and George Stibitz (BTL) in 1937. Their electromechanical 
relay devices were completed in 1943. While these machines could multiply 
numbers ten times faster than desk calculators, improvements beyond another 
order of magnitude were limited by the response times of mechanical compo
nents whose motions could not significantly exceed the speed of sound. 

Since the switching time of electron tubes did not suffer from this limitation, 
the tube technology was the basis of the second generation of programmable 
digital machines, pioneered by Eckert, Mauchley, and Goldstein at the Univer
sity of Pennsylvania. Their product, the ENIAC, required thousands of tubes, 
numbers far exceeding those in other electronic devices, so that tube reliability 
became a basic limitation in this development of technology. 

The two most advanced machines41 put in operation in 1950 were the 
Whirlwind (MIT) and SEAC (NBS), the Whirlwind depending entirely on 
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tubes and the SEAC following the English preference for the employment of 
mercury sonic delay lines as storage device. One of the main champions for 
delay Unes was M. V. Wilkes, who used them on the ESDAC (Cambridge, 
1949).42 The English view was evident in a statement by A. D. Booth43 

concerning the design of "modest-sized machines" (1953): 

. . . it has long been maintained by the author that for reliable 
operation an electronic computer must use a minimum possible 
number of electronic valves. APE(R)C designed with this view has 
less than 450. 

The English position was based upon the realization that electron tubes have a 
finite lifetime so that any network of a sufficiently large number of tubes 
would require an elaborate tube maintenance program. Such was an important 
feature of the Whirlwind design. 

If n is the number of tubes in a network, the rate of tube failure is 
characterized by 

-dn/dt = \n. 

If the tube failure rate constant X, is small, then in a small time interval A f the 
expected number of failures would be 

-An = XfAf. 

Hence, if X is measured in inverse hours and the number of tubes in the 
network is « « 1/X, on the average one tube would fail per hour. In a larger 
network with n » 1/X, several tubes might fail per hour. A critical number n* 
would exist so that in machines with n > n* tubes, a tube would fail in a time 
interval of the order of that required to search for the defective tube and 
replace it. The cost per calculation in a machine whose tube number ap
proaches the critical number would become enormous. 

As the problem of a vacuum tube lifetime loomed more seriously, attention 
to it was diverted by the development of the transistor, a smaller, cheaper, 
more durable, less power-hungry device, that was available to perform the 
same functions as the vacuum tube. By the late 1950s ferrite magnetic memory 
cores also appeared as ideal memory components. With these advances the 
technological phase transition for computers sketched in Figure 16 was experi
enced in the late 1950s and early 1960s. 

We have plotted schematically the computer operating cost per component 
as a function of the number of components. The upper dashed curve represents 
electron tube operating costs and the lower dotted curve solid-state machine 
operating costs, both as a function of the number of components. The rapid 
rise in the dashed curve reflects the increase in down time required for tube 
testing and replacement. There exists a critical tube number beyond which, at 
any moment it is certain that a tube will "die" in a time interval of the order of 
that required to detect and replace it. At that critical point the cost of a 
computation would become enormous. Fortunately, the technology of the 
solid-state computer "phase" became available so that the curve followed by 
the industry tended to be like the solid one of Figure 16. 
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FIGURE 16. Qualitative comparison of the unit contribution to computing 
cost by a single electron tube or transistor element versus the number of 
components in a calculating machine. 

With the employment of transistors and ferrite cores very large reliable 
memory banks could be constructed. The main limitation of the early solid-state 
technology became apparent as one tried to make calculations faster by 
decreasing the switching time required for basic binary operations. As switch
ing times decrease to the 10"8-10~9 second level, the time of a calculation 
becomes limited by the velocity of light, with the lower limit depending upon 
the distance traversed by a signal during the calculation. This physical limita
tion was overcome through the technological phase transition associated with 
the introduction of integrated circuits with hundreds of circuit elements per 
square centimeter on a substrate. As the packing density of circuit elements 
increases, the expected limitations on improvement might be associated44 with 
(1) heat generated during the switching operations, which will increase the 
diffusion constant of doping impurities in the silicon chips, thus blurring the 
identity of individual circuit elements, and (2) diffraction-limited optical 
problems associated with preparation of masks for photoetching technology, 
and (3) effects of background radiation (from cosmic rays and similar sources) 
on the false switching of very small circuit elements. 

The assertion that a technology advances through a series of phase transi
tions and substitution implies that, if one plots the output of a technology as a 
function of time, it might be considered a succession of logistic curves. Each 
curve reaches a saturation level. With each level of evolutionary innovation to 
a new logistic develops. Such a graph is drawn in Figure 17, which summarizes 
the improvement in number of feet of advance a day in hard rock drilling over 
150 years.27 The critical innovations are indicated in the figure. 
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FIGURE 17. Progress in tunnel drilling in hard rock: all drilling records before 
1965 were taken from Alpine tunnels so that conditions were essentially the 
same. While there were great days in the Mt. Blanc tunnel, drilled with the 
latest tools, the average rate of advance was not significantly higher than in 
tunnel construction at the turn of the century, because of various unexpected 
holdups. The 72-foot-a-day record of 1967 was made in the drilling of a water 
tunnel in St. Louis, Michigan with the latest continuous drilling machine.27 

We close our discussion of phase transitions in technology with the presenta
tion of several graphs showing the growth and decline in the number of 
companies concerned with some given technologies. As a new technology 
grows, numerous firms are established to produce and market the output of 
that technology. At first the number of firms and their total output seems to 
increase exponentially. Generally, the new firms are born independently of 
each other so that an entrepreneur or investor does not have sufficient data to 
make a good estimate of the share of the market potentially available to him. 
Hence, the number of firms sometimes increases more rapidly than the market 
would warrant, leading to its supersaturation. As long as investors are patient 
and bankers are lenient in calling their loans, this state of supersaturation may 
persist for some time, but with a business slump or money panic the weaker 
firms will not be able to pay their notes or bills and will be forced into 
bankruptcy (or may be absorbed by stronger firms). Thus, a phase transition 
occurs and a state in which there are many small firms is transformed into one 
with a small number of larger firms. 

This "condensation" effect is exhibited in Figure 18, where the number of 
operating railroads in the United States is plotted as a function of time. The 
growth is evident until the panic of 1907, which started the steady decline in 
the number. (The figure is based on Table Q284, pp. 735-736 of reference 30.) 

The number of banks in the United States follows a similar pattern with the 
breaking point occurring in 1921, a post-World War I depression year. (The 
bank data summarized in Figure 19 is taken from Table X-580, pp. 1019-1020, 
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FIGURE 18. Number of operating railroads (in hundreds) in the years 1850 to 
1970.45 
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of reference 30.) In the decade 1921-1930, 6,987 banks failed, with the heaviest 
mortality among small banks in small towns in areas of depressed staple 
agriculture.45 "Hazardous practices of country bankers, encouraged by loose 
state banking laws and slack enforcement, needed only the collapse of crop 
prices and land values to render them fatal." The number of banks closed in 
the Depression years were: 1928, 491; 1929, 642; 1930,1,345; 1931, 2,298 (the 
peak year); and 1932, 1,436. The peak month was October 1931 with 544 
failures. The large city banks joined the rural procession into insolvency in 
1930. 
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Bank holidays became common in the autumn of 1931 and continued 
through the winter. "When Roosevelt stood that Saturday afternoon [March 4, 
1933] to take the oath as president, the economic heart of the country as 
symbolized by the banks, had stopped beating."45 One of the first acts of the 
new administration was to declare Monday, March 6, the beginning of an 
extended bank holiday. Upon its termination on March 15, 5% (about 1,000) 
of the banks in the United States were declared insolvent. Various government 
actions during the holiday shored up public confidence in the surviving banks. 
The president's first fireside radio chat asked the public to return savings to the 
banks and refrain from making unnecessary withdrawals. His plea succeeded, 
providing more security to the banks than the accompanying legislation. 

Condensation curves similar to those in Figures 18 and 19 can also be 
constructed for the number of automobile firms, number of telephone compa
nies, and so on. 

C. THE NAVIER - STOKES EQUATION AND THE USE OF DIMENSIONLESS CON

STANTS IN SCALING EXPERIMENTS IN HYDRODYNAMICS .The most fruitful model
ing strategy for complex fluid dynamical systems is the use of dimensionless 
constants for design of experiments involving small-scale physical models of 
full-sized objects under investigation. The design of airplanes, ships, dams, 
harbors, canals, etc. would be impossible without scaling experiments. The 
physical basis and the experimental practice of this strategy will be described 
in terms of the Navier-Stokes equation for the flow field of an incompressible 
viscous fluid. 

Let v = v(r, t) be the velocity of a fluid element located at r at time t of an 
incompressible fluid of density p and with kinematic viscosity v. The Navier-
Stokes equation is46 

dv 
(35a) ^ + v - v v = -V(p/p) + W2y + F /p , 

p = />(r, /) being the pressure on the fluid element at (r, t) and F the external 
force acting on the fluid. The equation of continuity (a consequence of the 
conservation of mass) for an incompressible fluid is 

(35b) V • v = 0. 

Since (35a) is a vector equation, it corresponds to three scalar equations. These 
combined with (35b) yield four equations for the four variables, the pressure 
and the three components of the velocity vector. The force function will be 
specialized to be a gravitational force with 

(35c) F /p = g. 

The Navier-Stokes equation is applicable to many processes involving fluids, 
such as the motion of ships and subsonic airplanes, and the flow of fluids 
through pipes. In the description of each of these processes one must introduce 
the boundary conditions required to specialize (35) to the process being 
considered. The nonünear term v • Vv in (35a) is a tremendous mathematical 
nuisance. It makes hydrodynamics a difficult subject. On the other hand, it 
contributes to making it physically a rich subject. 
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Since the state of the art of solving nonlinear partial differential equations 
has not become sufficiently advanced to solve (35a) under the conditions 
required for the design of ships and airplanes or even for the prediction of the 
weather, it is important to develop experimental techniques for the investiga
tion of the solutions of (35a) for engineering applications. 

Scaling theory is based on the transformation of equation (35) to an 
equivalent equation for dimensionless quantities. The velocity, the pressure, 
and even g in (35a) are all variables with dimensions—their numerical values 
depend on the units chosen. To obtain a dimensionless equivalent of (35) we 
measure the local velocity, pressure, etc., as a multiple of some important basic 
dimensions of the object responsible for the flow pattern being investigated. 
Suppose, for example, that we wish to investigate the flow pattern of air 
around an airplane in flight. We let 

V = average velocity of body being investigated; 
L = an important unit of length of the body 

(say the average width of an airplane wing) ; 
P = average pressure in absence of body. 

Then we can define a set of dimensionless quantities v\ p\ x\ etc., by 

(36a) v = Vv\ x = Lx\ p = Fp'. 

If we are concerned only with steady flow patterns, we can set dv/dt = 0 in 
(35a). Now if we set 

(36b) v ' = /9/9x'+ ••• = L v , 

equation (35a) can be shown to have the form 

(37) v ' - v v ; = -PV 'p + (1/-K)V ' V + l/F 

with dimensionless coefficients defined by 

(38a) R = Reynolds number = VL/v; 
(38b) P = pressure number = P/pF2; 
(38c) F = Froude number = V2/Lg. 

Sommerfeld called the combination VL/v the Reynolds number to honor 
Osborne Reynolds' pioneering studies on the onset of turbulence in flow of 
fluids through pipes. F = V2/Lg is named after William Froude, a junior 
naval architect under Isambard Brunei and Scott-Russell (of recently revived 
soliton fame) in the design of the Great Eastern. That great, underpowered, 
unprofitable iron ship (1858), from which the first successful Atlantic cable 
was laid, was a wonder of its time. Unfortunately, since its design required a 
giant leap from the state of the art, it was plagued by numerous engineering 
and management faults47 (including poor cost estimation, a common curse of 
giant leaps). Froude's experiences with the Great Eastern motivated him to 
consider the possibility of estimating power requirements for ships from model 
tests. 
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There are certain flow regimes with the property that two out of the three 
terms on the right-hand side of (37) can be neglected relative to the remaining 
one. For example, suppose only the 1/F term need be retained. Then the flow 
velocity field and engineering design parameters that depend upon the flow 
field would be a function of only the dimensionless quantity F. Hence 
small-scale model experiments could be made to obtain design data for 
full-scale engineering of the device of interest. 

It is easy to show that for a 1000-foot ship operating in the 40 ft/sec range, 
with pressures being measured in units of atmospheric presssure (and noting 
that the kinematic coefficient of viscosity of water at 15° C is v = 1.23 X 
10"5ft/sec); 

1/F =20 , P - 0.69, and R'1 = 10~9. 

Hence, the 1/F term is the most important one on the right-hand side of (37). 
Then ship modeling can, to a first approximation, be based on Froude 
modeling; i.e., modeling with a dimensionless constant that depends on g. 

In Figure 12, we have plotted a typical operating curve of a ship as a 
function of F 1 / 2 . A 10-foot ship model moving 4 ft/sec has the Froude 
number of a 1000-foot real ship at 40 ft/sec. Hence, by plotting the ratio of 
pounds of resistance per ton of displacement (a dimensionless quantity) of a 
10-foot model towed at 4 ft/sec in a towing tank as a function of 1/F, one can 
determine the power required to overcome the resistance expected by the 
full-scale ship. 

In aerodynamics the first term on the right side of (37) is most important. 
Consider an airplane with a wing of width 10 ft, designed to operate at a speed 
of 800 ft/sec (about 545 miles/hr). Measuring the pressure in atmospheres 
(and using the kinematic coefficient of viscosity of air at 15°C, v = 1.59 X 10"4 

ft2/sec), 1/F = 5 X 10'4 , p = 1.45, and 1/R = 2 X 10"8. 
If, as suggested by these numbers, we need retain only the first terms on the 

right side of (37), the resulting equation is the Bernoulli equation of a 
nonviscous fluid V [\v2 + p(p)] = 0. Since the pressure difference between the 
bottom and top of the wing section of an airplane, as developed by circulation 
of air around the wing, determines the "lift" of the wing, it is not surprising 
that the pressure term is most important in our regime of interest. A wind 
tunnel46 is the traditional device for measuring the Hft and drag (and their 
ratio) on a model airplane in a flow stream. Since the length L does not enter 
into the pressure number, the lift-to-drag ratio would be the same on a small 
airplane model as on a full-scale object of the same shape. 

4. The tyranny of many dimensionless constants. We have noted that simple 
questions about ships, airplanes, and flow of fluids through pipes can each, to 
a first approximation, be discussed in terms of a single dimensionless constant. 
Even without an understanding of hydrodynamics, ships sailed around the 
world; it was only with the advent of steam propulsion that naval architects 
sought to make calculations of the power required for a ship to perform in a 
desired manner. When sailors depended on the wind they tinkered with ship 
shapes and sail configurations to empirically improve performance. 
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It is remarkable that within ten years of the first flight of the Wright 
brothers, Igor Sikorsky (1913) built a four-engine giant (92-foot wing-span) 
capable of carrying a payload of 4.5 tons. Sikorsky's Ilya Mourometz (1914) 
stayed airborne for 6.5 hours and carried six passengers.48 It could have served 
as a prototype for a commercial airliner. However, World War I intervened 
and soon pilots were shooting at each other in aerial dogfights, and bombing 
cities of their opponents. By 1924, twenty-one years after Kitty Hawk, the 
Imperial Airways flew Handley-Page airliners in routes from Cairo to Africa 
and India.48 The 1928 model H-P 42s had a passenger capacity of 38. 

On December 2, 1942, Enrico Fermi and his colleagues produced the first 
sustained fission chain reaction, demonstrating the feasibility of a nuclear 
power plant. By fifteen years later, the first commercial nuclear power plant 
was operating. 

The highly successful space program was initiated only a few decades after 
primitive rocket experiments. Robert Goddard's first success in shooting a 
rocket over a mile vertically was achieved on May 31, 1935; twenty-six years 
later the Soviet cosmonaut was the first human to encircle the globe in a 
rocket-launched satellite. 

The record of these successes has led the public, and even numerous 
scientists, to believe that with a little money and ingenuity, any desired 
scientific goal could be achieved. Unfortunately, this is not always true. 
Consider the magnetically confined fusion program which started as Project 
Sherwood in 1951. The aim of the project was to accelerate a plasma of 
ion-deuterons to a point where, at an energy equivalent to a temperature of 
about 200 X 106oK, nuclear fusion would occur with a tremendous release of 
energy. Since 1/6500 of the hydrogen in ocean water is composed of 
deuterium it is considered by optimists that, if the controlled fusion process 
can be successfully achieved, the energy problems of the world would be 
solved. Unfortunately, thirty-three years and hundreds of millions of dollars 
later, energy by magnetically confined fusion seems even further away than it 
did in 1951. What has happened? Why has this branch of physics failed to live 
up to expectations? 

I contend that the magnetically confined fusion program has fallen victim to 
the tyranny of many dimensionless constants. The great engineering successes 
of the past have involved processes which could, to a first approximation, be 
characterized by a small number of dimensionless constants. Hence only a 
small number of model experiments were necessary to determine the feasibiUty 
of a project and to estimate the cost and difficulties to be surmounted. Even 
the space program was broken down into a number of subprojects, each of 
which could be analyzed in terms of a small number of dimensionless con
stants so that the results of many independent model tests could be used as a 
basis of the required full-scale engineering designs. 

The complication of the magnetically confined fusion program seems to be 
that all the hydrodynamic dimensionless constants (about eight) as well as 
several electromagnetic and nuclear dimensionless constants are intimately 
connected in the process of transforming a low density, low temperature 
plasma to a higher density, very high temperature plasma. Since, as we shall 
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now indicate, the cost involved in, or the time required for the understanding 
of the nature of a process characterized by N interacting dimensionless 
constants can be expected to grow exponentially with N, we should not be 
surprised with the slow progress in the field of magnetically confined fusion. 

Let N be the number of dimensionless constants required to characterize a 
process. Then an experimental program must sample nxX n2X • •• XnN 
points in the JV-dimensional space of characterization. The cost of the program 
P should be proportional to the number of sampling tests; i.e., 

( 1 N \ 
P = kn1X n2X • • • XnN = kexpNl — £ log**,/• 

Hence, if we define X to be the average value of the logarithm of the number of 
observations for each dimensionless constant, 

P = kcxpNX 

as was suggested to be the case. 
The genius of individual inventors sometimes allows them to cut costs and 

time by going directly to the correct regime of the dimensionless constant of 
interest without conducting model tests over a broad range. A probabilistic 
argument similar to that given above indicates49 that the probability of an 
individual's being identified as a genius by going "directly to the point" in the 
development of a technology that involves N connected dimensionless con
stants decreases exponentially with N. 

Certain social situations and environmental processes might also depend on 
a large number of dimensionless constants. The understanding of these 
processes is not exempt from the tyranny of many dimensionless constants; 
nor is an attempt to make policies exempt, without a considerable insight into 
the manner in which a change in a single dimensionless constant influences 
others. Just as the enthusiast for magnetically confined nuclear fusion knows 
how he would like to solve the energy problem, so the enthusiast for social and 
environmental reform knows how he would like to make our lives full of 
harmony and beauty. Unfortunately, both of these classes of enthusiasts 
remain dreamers until the tyranny of many dimensionless constants is over
come.50 

5. On some problems arising in the use of computers for the investigation of 
complex systems. Most modern students of subjects cultivated by mathematical 
models become adept in the employment of computing machines for the 
investigation of their models. A commonly used modeling style exploits sets of 
coupled rate equations (often nonlinear) for variables of interest. It is not 
unusual to attempt to describe complex systems by a dozen or more coupled 
differential equations. For computer analysis the rate equations are approxi
mated by difference equations. Experienced investigators are generally aware 
of problems that arise from the sensitivity of the nature of the solution of the 
rate equations to the numerical choice of rate constants (the coefficients of the 
dependent variables) in the differential equations. In some cases a small 
change in the rate constants may lead to qualitatively different solutions of the 
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equations. This may result in several possible consequences—one may have 
discovered an important "instability" or "phase transition" in the phenome
non or one may have the wrong interpretation of a calculation because the rate 
constants were not properly chosen. Even in a system of five linear equations 
the required twenty-five rate constants may be difficult to find. 

Since the determination of rate constants by experiment or observation of 
external events is generally costly, a discipline of sensitivity analysis51 has 
evolved to develop strategies for deducing the most critical (or sensitive) 
constants in the process. Knowing these, more attention (or money) might be 
devoted to their precise estimation at the expense of paying less attention to 
those constants that are less relevant for the characterization of a model. 

The purpose of this brief section is to direct attention to another problem 
concerning the analysis of nonlinear models that is not sufficiently recognized 
by some investigators. When* a differential equation is converted to a difference 
equation, for certain initial conditions the difference equation may have 
qualitatively different solutions. We shall exhibit this for even the most simple 
case, that of the logistic equation 

(39) dx/dt = JC(1 - x) if x > 0 and x(0) > 0. 

It will be shown that the natural difference equation representation 

(40) (xn+1 - xn)/h = xn(l - x j , 0 < h < 1 

with xn = x(hn) and hn = t has solutions that are qualitatively different from 
those of (39) when x(0) > \/h. Then a difference equation will be constructed 
whose solutions at the points x(hn) lie precisely on the continuous solution of 
(39). 

THE USUAL DIFFERENCE EQUATION DOES NOT ALWAYS APPLY. 

We now show through an examination of the logistic equation (39) that in 
the process of converting a nonlinear differential equation to a difference 
equation, solutions of the difference equation exist which differ qualitatively 
from those of the differential equation. The solution of (39) follows from 
separation of variables or by linearization through the transformation y = x'1. 
It is found that 

(41) x(t) = x0{x0+(l-x0)e-<}~1. 

When x0 = x(0) > 0 and t > 0 there are only two forms for this solution of 
(39): 

(a) x(t) -» 1 in a monotone increasing manner from x(0) when 0 < x(0) < 1; 
and 

(b) ;c(/) -» 1 in a monotone decreasing manner from JC(0) when x(0) > 1. 
There are no periodic solutions of (39) and x(t) never becomes negative when 
x(0) > 0 and t > 0. 

The difference equation (40), which may also be written as a recurrence 
formula 

(42) Xn + l ~ Xn ~*~ nXn\\ Xn)> 
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would commonly be used to construct a numerical solution of (39). A detailed 
analysis of (42) for the regime x0 > 0 and 0 < h < 1 is provided in the 
Appendix (see also reference 50), where it is shown that four distinct ranges of 
initial conditions yield four distinct classes of solutions of (40). They are:50 

(a) 0 < x0 < 1. The set of values {xn} derived from (42) form a monotone 
increasing set of numbers that approach 1 from below as n -* oo. 

(b) 1 < x0 < h'1. The set of values {xn} form a monotone decreasing set of 
numbers that approach 1 from above as n -> oo. 

(c) h~l < x0 < 1 + h'1. Here the set of values {xn} is not monotone; xx 
drops to between 0 and 1 and succeeding xn's form a monotone increasing 
sequence approaching 1 from below. 

(d) x0 > 1 + A-1. Here xx becomes negative and the succeeding x„s remain 
negative, forming a monotone decreasing unbounded sequence. 

Clearly only in cases (a) and (b) do the solutions of (40) mimic the solutions 
of (39). Hence in the range of initial conditions x0 > h~l the solution of the 
difference equation bears no resemblance to that of the differential equation.* 

An alert calculator understanding the structure of (39) would soon observe 
his error when he chose x0 > h~l and correct for it by perhaps replacing h by 
h/2. However, suppose he was investigating a pair of coupled equations, say 
(45a) 

( 4 5 b ) X2 — #21*1 "̂  ö22-*2 "*" c21*l "̂~ c22xlx2 "*" c2ix2' 

Then he might not realize that the recurrence formulae derived by setting 
(46) *,= [x)n+l) - xf]/h 
might not yield solutions that mimic those of (45), a set with twenty-seven 
classes of solutions (45) depending upon the rate constants and initial condi
tions. 

Now suppose an investigator not to be alert to the fact that in the act of 
approximating (39) by (40) one might obtain a form of solution inappropriate 
to (39). Furthermore, suppose that of a total range that might be reasonable for 
a choice of x0, the interval (0,/T1) represented a fraction ƒ. Then the 
probability that our uninformed investigator choosing an initial x0 at random 
would produce a numerical solution of (40) mimicking the solution of the 
differential equation (39) would be a fraction ƒ. 

Even a more sophisticated analyst might be ignorant of an expected form for 
the solution of (45). Suppose that the user of a difference equation constructed 
from (45) by employing (46) were concerned with initial conditions in the 

* In the case h > 1 many remarkable sequences have been generated from (42). If one sets 

(43) xn = (l + h~l)yn and c = A + l 

(42) becomes 

(44) yn + i = cyn(l-yn). 

By proper choice of c and x0 one may find periodic sequences, random sequences, bifurcation 
solutions, etc. Indeed a whole modern branch of mapping theory has centered around the 
recurrence (44) [cf. (42), (43), and (44)].52'53 
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range (Av Bx) for xx and (A2, B2) for x2. Furthermore, suppose that in a 
fraction fx of the xx range, f2 of the x2 range, the solution of the difference 
equations representing (45) would mimic those of (45). Then the probability 
that a pair of initial values [*i(0), x2(0)] would yield solutions of the difference 
equations properly mimicking the solution of (45) would be fxf2 with each 
0 < ƒ < 1. The argument immediately generalizes to the case of n coupled 
nonlinear equations. 

It is doubtful that even an investigator clever enough to understand the 
expected behavior of solutions of (45) could comprehend the full variety of 
solutions available to the generalization of (45) to a set of nonlinear equations 
for a half-dozen variables. He would then be at the mercy of the computing 
machine. It is quite likely that for n nonlinear equations, the probability that 
the solution of the difference equations constructed from the rule (46) would 
mimic the solution of the generalization of (45) would be of the order of 
f if2 " ' fn (with each 0 < fj < 1), so that in the regime of large n the 
probability of the machine solution of the difference equation resembling the 
solution of the differential equation could become vanishingly small. 

One might argue that by decreasing the time interval h between recurrence 
steps each fj could be increased. However this would be accomplished at the 
expense of increasing the number of iterations (probably exponentially in h~l) 
required for the calculation of trajectories associated with a preassigned total 
process duration. Let the number of coupled variables become large, say of the 
order of five or more. Then the number of iterations required to follow a 
trajectory sufficiently long for the full effect of nonlinearities to properly 
exhibit themselves could become so large that round-off errors in the calcula
tion might continue the apparent nature of the trajectories. The random 
statistical character of the round-off errors could effect computed trajectories 
in a manner similar to that of a random noise source upon natural trajectories 
in real life situations. Situations can be imagined with round-off errors acting 
as a "heat bath" with the driver variables achieving an equilibrium with the 
computer "heat bath." 

Appendix50 

We seek the qualitative characteristics of the solution to the recurrence 
formula 

(Al) *„+ 1 -A[( l +A"1)-*„]*,, 

when 

(A2) x0 > 0, 0 < h< 1 

in four regimes of initial values 

(A3) ^ ° < X° < lf ^ h~l<x°<1 + h~l> 
( (b) 1 < x0 < h~\ (d) 1 + A"1 < JC0. 
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The character of the solution to (Al) in these regimes can be developed from 
the following properties of the mapping 

y = x[l + h(l-x)] 
1 ) -hx[(l + h-l)-x], 0 < A < 1 . 

(i) If 0 < x < 1, then y > x, since 1 + A(l - x) > 1. 
(ii) If x < 0, then y < x, since 1 + A(l - x) > 1 and both x and y are 

negative; then \y\ = |x|[l + A(l - x)] > \x\ as required. 
(iii) dy/dx > 0 for all 0 < x < 1, so that j is an increasing function of JC in 

that range. To prove this statement, we first note that y is a continuous 
function of x and that 

dy/dx = (1 - Ax) + A(l - JC). 

Then dy/dx > 0 since (1 - x) > 0 and Ax < 1. Since y(l) = 1, this also 
implies 

(iv) If 0 < x < 1, then y < 1; 
(v) If x > 1, then ^ < x (this follows from (A4) and A — hx < 0 or 

1 + A(l - x) < 1); 
(vi) If 1 < x < A"1, then >> > 1. 

For proof, we note first that y(l) = 1 and y(h~l) = 1. At the midpoint of the 
x interval x = (1 + /T 1 ) / 2 = (1 + h)/2h so that 

^([1 + h]/2h) = (1 + h~l)2/4 > 1. 

Inasmuch as >>(x) is a continuous quadratic function of x, it cannot achieve 
the value unity at any other choice of x than x = 1 and h~l. Therefore, y > 1 
if 1 < x < /T1, as required. 

We are now in a position to find xn for various initial regimes of x0. 
(a) If 0 < x0 < 1, then from (i) and (ii), by letting x = xn and y = xn + 1 , 

y(x0 < xx < x2 < • • • < 1) is a monotone increasing function of n which 
never exceeds 1. 

(b) If 1 < x0 < A-1, then from (v) and (vi) y(x0 > xx> x2> • • • > 1) is a 
monotone decreasing function of n, never becoming < 1. 

In the above two regimes, the solutions of the difference equation (Al) have 
the same character as those of the differential equation (39). 

Now consider the remaining cases: 
(c) Let h~l < x0 < 1 + h~l. We may then write x0 = h~l + e, with 0 < e < 

1. Hence xx = (1 - e)(he + 1) = 1 - (1 - h)e - he2 < 1. The smallest value 
achievable for x0 in the present regime corresponds to e = 1, at which point 
x1 = 0. Hence, if h~l < x0 < 1 + A"1, then 0 < xx < 1. Combining the above 
inequalities with (i), we find 0 < xx < 1 < x0 and xx < x2 < x3 < • • • < 1. 
Therefore, in the present regime, xn is not a monotone function of n since it 
first decreases with increasing n and later increases with increasing n, unlike 
the solutions of the differential equations. 

(d) Let x0 > 1 + A"1. Then A(x0 - 1) > 1 or A(l - x0) < - 1 , so that 
xi = *o[l + *(1 "~ *o)] < xo(l - 1) - 0. Then from (ii), • • • < x3 < x2 < xx 

< 0, so that all xn for n > 1 are negative. Hence, when x0 > 1 + A"1, xn 
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eventually becomes and remains negative for succeeding n, yielding a form of 
solution of the difference equation (Al) which is not obtained from the logistic 
differential equation. 

The conclusion to be drawn from the above analysis is that there are regimes 
of initial conditions which yield solutions of difference equations which are 
qualitatively different from the classes of solutions of the differential equations 
that they were intended to mimic. Incidentally, several authors54 have studied 
(Al) for h > 1 and have found it to have periodic solutions for some special 
initial conditions, another class not extant in the solutions of (39). There is no 
reason why the difference equations derived from coupled sets of nonlinear 
differential equations should not have classes of solutions that are not obtained 
from the differential equations. 

There is another nonlinear difference equation which claims to be the more 
appropriate representative of (39) than (Al) for the regime x > 0 and t > 0 in 
that its solutions completely mimic the solutions (41). The more appropriate 
alternative equation is, for 0 < h < 1, 

(A5) *"+1= l + h(î-x„)-
It might be argued that, if the right-hand side of (A5) is expanded in powers of 
h and only the term of 0(h) is retained, then (A5) would become equivalent to 
(Al). This is true only for certain regimes of initial conditions and correspond
ing values of h. Equation (A5) has the charm that it is easily solved in closed 
form by letting yn = l/xn. Then (A5) becomes linear 

^ 4 - 1 = ^ ( 1 ~h) + h 
or 

G w i - i J - U - i X i - A ) 
so that 

* , « 1 + U - 1 ) ( 1 - A ) " 

and 

(A6) xn = x0[x0 +(1 - x0)(l - h)n]~\ 

which has the same quaUtative monotonicity properties as defined by (41), if 
0 < h < 1. Since t = nh, n does not have to be very large to make the 
approximation 

G-»)"-(l-i)"-.~. 
as required to pass from (A6) to (41) as h -» 0. When h = 2, (A5) has 
solutions of period 2 as is evident from (A6). 
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