THE TRACE FORMULA FOR VECTOR BUNDLES

V. GUILLEMIN AND A. URIBE

Let X be a compact Riemannian manifold and let $0=\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \ldots$ be the spectrum of the Laplace operator. By a theorem of Hermann Weyl the spectral counting function

$$
\begin{equation*}
N(\lambda)=\#\left\{\lambda_{i}^{2}<\lambda\right\} \tag{I}
\end{equation*}
$$

satisfies a growth estimate of the form $O\left(\lambda^{N}\right)$, so its Fourier-Stieltjes transform

$$
\begin{equation*}
\int e^{i \lambda t} d N(\lambda)=\sum_{k} e^{ \pm i \sqrt{\lambda_{k} t}} \tag{II}
\end{equation*}
$$

is a tempered distributional function of t. The classical trace formula says that the singular support of (II) is contained in the length spectrum of X. Moreover, under suitable hypotheses on geodesic flow, the trace formula gives considerable information about the singularities in (II). (See [DG and C].)

There is a fairly straightforward (and not terribly interesting) generalization of the trace formula to vector bundles. (See, for instance, the introduction to [DG].) We will be concerned in this article with a much more subtle generalization inspired by recent articles of Hogreve, Potthoff, and Schrader [HPS], and Schrader and Taylor [ST] in Communications in Mathematical Physics.

Let G be a compact Lie group and $\pi: P \rightarrow X$ a principle G-bundle with connection. Given a finite-dimensional unitary representation, ρ, of G we will denote by $E \rho$ the vector bundle over X associated with ρ and by D_{ρ} the associated connection.

Now consider a ladder $\left\{\rho_{e}, e=1,2, \ldots\right\}$ of irreducible representations of G. (This means that the maximal weight of ρ_{e} is e times the maximal weight of ρ_{1}.) For given e let

$$
\lambda_{k, e}, \quad k=1,2,3, \ldots
$$

be the spectrum of the Laplace operator on $C^{\infty}\left(E \rho_{e}\right)$:

$$
\Delta_{e}=D^{*} \rho_{e} D \rho_{e}+e^{2}
$$

The Hogreve-Potthoff-Schrader and Schrader-Taylor papers are concerned with asymptotic properties of the quantities e and $E=\lambda_{k, e}$ when e and E tend to infinity in such a way that the ratio $r=e: \sqrt{E}$ is (approximately) constant. One way to measure such asymptotic behavior is as follows: Fix a Schwartz function of one variable, $\varphi(s)$, with $\varphi(s) \geq 0$ and $\int \varphi(s) d s=1$, and form the sum

$$
\begin{equation*}
N_{\varphi, r}(\lambda)=\sum_{e} \sum_{\lambda_{k, e}<\lambda^{2}} \varphi\left(r \sqrt{\lambda_{k, e}}-e\right) \tag{III}
\end{equation*}
$$

Received by the editors May 7, 1986.
1980 Mathematics Subject Classification (1985 Revision). Primary 58G25.

This sum is similar to the sum (I) except that it counts eigenvalues in such a way that eigenvalues for which the ratio $e: \sqrt{E}$ is close to r are weighted much more heavily than eigenvalues for which the ratio is far away from r. Our main result is a trace formula for the Fourier-Stieltjes transform of $N_{\varphi, r}$. To formulate it we need to recall some facts about the coupling of a classical dynamical system to a Yang-Mills field. Let O_{e} be the co-adjoint orbit in g^{*} associated with the representation, ρ_{e}, and let M_{e} be the symplectic manifold obtained by reducing $T^{*} P$ with respect to O_{e}. By a theorem of Sternberg $[\mathbf{S}]$ and Weinstein $[\mathbf{W}]$ the choice of a connection on P gives rise to a symplectic fiber mapping

$$
\pi_{e}: M_{e} \rightarrow T^{*} X
$$

If H is the standard Kinetic energy Hamiltonian on $T^{*} X$ describing the motion of a classical particle on X when no background field is present, $\pi_{e}{ }^{*} H$ describes the motion of a classical particle (of "charge" e) when a background field is present. (See $[\mathbf{S}]$.)

Now fix e and E so that $e: \sqrt{E}=r$ and consider the restriction to the energy surface $\pi_{e}{ }^{*} H=E$ of the Hamiltonian system on M_{e} associated with $\pi_{e}{ }^{*} H$. We will assume that the periodic trajectories of this system are nondegenerate and denote the set of these trajectories by Γ.

Theorem. If the function $\hat{\varphi}$ has compact support, the Fourier-Stieltjes transform of $N_{\varphi, r}(\lambda)$ can be written as a locally finite sum

$$
\begin{equation*}
e_{0}(t)+\sum_{\gamma \in \Gamma} e_{\gamma}(t) \tag{IV}
\end{equation*}
$$

where e_{0} and the e_{γ} 's are distributions of compact support. Moreover, e_{0} has no singularities except for a classical conormal singularity at the origin, and e_{γ} has no singularities except for a classical conormal singularity at $t=T_{\gamma}+r \theta_{\gamma}$. Here T_{γ} is the period of γ and θ_{γ} an appropriate determination of

$$
\begin{equation*}
\frac{\log (\text { holonomy of } \gamma)}{2 \pi i}-r T_{\gamma} . \tag{V}
\end{equation*}
$$

Moreover, $e_{\gamma}(t)$ is equal to

$$
\begin{equation*}
c_{\gamma} \delta\left(t-T_{\gamma}-r \theta \gamma\right)+\tilde{e}_{\gamma}(t) \tag{VI}
\end{equation*}
$$

where $\tilde{e}_{\gamma}(t)$ is in \mathcal{L}^{1} and the constant c_{γ} is related to the primitive period T_{γ}^{*} of γ and the linearized Poincaré map, P_{γ}, by the formula

$$
\begin{equation*}
c_{\gamma}=\hat{\varphi}\left(\theta_{\gamma}\right) \frac{T_{\gamma}^{*}}{2 \pi} \frac{\exp \left(i \pi \sigma_{\gamma} / 4\right)}{\left|I-P_{\gamma}\right|^{1 / 2}}, \tag{VII}
\end{equation*}
$$

σ_{γ} being a suitable Maslov index.
REmARKs. (1) There is an analogue of (VI) for $e_{0}(t)$ as well, which we won't both to describe here. From it one gets a Weyl formula for the asymptotic behavior of $N_{\varphi, r}(\lambda)$.
(2) Just as in the classical case, an analogue of the expansion (V) is true when the periodic trajectories on the $\pi_{e}{ }^{*} H=E$ energy surface form "clean" submanifolds. (See [DG, §6].)

Bibliography

[C] J. Chazarain, Formule de Poisson pour les variétés riemanniennes, Invent. Math. 24 (1974), 65-82.
[DG] J. J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic geodesics, Invent. Math. 29 (1975), 184-269.
[HPS] H. Hogreve, J. Potthoff and R. Schrader, Classical limits for quantum particles in external Yang-Mills potentials, Comm. Math. Phys. 91 (1983), 573-598.
[ST] R. Schrader and M. Taylor, Small hasymptotics for quantum partition functions associated to particles in external Yang-Mills potentials, Comm. Math. Phys. 92 (1984), 555-594.
[S] S. Sternberg, On minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 5253-5254.
[W] A. Weinstein, A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys. 2 (1978), 417-20.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Department of Mathematics, Princeton University, Princeton, New Jersey 08540

