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moments of distributions, finding Gaussian quadrature rules, expressing the 
solutions of differential equations as power series or as series of orthogonal 
polynomials, and evaluating and transforming such series. 

The last part of the book is concerned with nonlinear multidimensional 
recurrences and iterations. In contrast with the earlier section, where the 
emphasis was on the generation of sequences and on the questions of stability 
and convergence of the backward recurrence as the starting point increased, 
the principal interest with these recurrences is the behavior of the sequences 
which are generated as a function of the initial values. Although the strange 
behavior of sequences which do not converge has attracted considerable recent 
interest, the field is too new for definitive treatment, and cases in which the 
sequences do converge to a limit are treated more fully. These include the 
classical Gauss arithmetic-geometric mean algorithm for the complete elliptic 
integral, as well as the Borchardt and Bartky algorithms. These are of particu­
lar interest both because of the classic nature of the problems which they solve, 
including the rectification of the lemniscate and ellipse, but also because they 
provide approaches to evaluating general elliptic functions and integrals which 
are not hypergeometric and do not satisfy linear differential equations. 

In summary, the numerical mathematician concerned with evaluation of 
special functions will find most of this book of exceptional value, while the 
mathematician interested in other topics will be introduced to many surprising 
results, which draw on a wide spectrum of classical mathematical techniques. 
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Dimension theory is one of the triumphs of point-set topology. When Cantor 
showed that Euclidean spaces of different dimensions nevertheless admitted 
one-one correspondences, and Peano showed that this could even happen in a 
continuous way, the naive ideas about dimension were shattered. Was there 
even a topological invariant that could be called dimension? Brouwer showed 
that this was so, at least for EucHdean spaces; but his work did not lead to a 
satisfactory general theory. The key idea was contained in a remark of 
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Poincaré: Euclidean space it3 is 3-dimensional because prison walls are 
2-dimensional. This was developed, in the early 1920s, by Urysohn and 
independently by Menger, into a satisfactory theory of dimension. They 
defined what is now called the "small inductive dimension", indX, of a 
topological space X, by: ind <f> = - 1 , and ind X < n precisely when each point 
of X has arbitrarily small neighborhoods whose boundaries have ind < n — 1. 
At least for separable metrizable spaces this leads to a rich and rewarding 
theory. The following brief remarks can do no more than indicate the flavor of 
the subject, and a little of its history. 

Among the more significant early results for separable metrizable spaces 
(emphasized, for example, in Menger's book [4]) one should mention: 

THE SUBSPACE THEOREM. If Y is a subspace of X, its dimension is at most that 
ofX. 

THE SUM THEOREM. IfXis the union of a countable family of closed subspaces 
each of dimension at most n, then the dimension of X is at most n. 

THE SPLITTING THEOREM. X is of dimension at most n if, and only if, it is the 
union ofn + \ {or fewer) subspaces of dimension 0. 

THE EMBEDDING THEOREMS. If X is of dimension at most n, it is embeddable 
as a subspace in a compact metrizable space of the same dimension, and this is 
embeddable in Euclidean space R2n+1 (and in fact in a "universal n-dimensional" 
subspace of R2n+l). 

The number In + 1 is best possible (though this was not proved until 
somewhat later). 

THE PRODUCT THEOREM. If X is m-dimensional and Y is n-dimensional, then 
X X Y has dimension at most m + n. 

(The inequality here is counter-intuitive but inevitable; as P. Erdös showed, 
the rational points in Hubert space form a 1-dimensional space whose product 
with itself is also 1-dimensional.) 

And—most significant of all—the dimension ofRn is n. 
These early results display a remarkable feature that has persisted in most 

later work: there is no restriction to compact or "smooth" spaces. Arbitrary 
(even pathological) separable metrizable spaces can be handled, and in fact 
turned to advantage—for instance, in exploiting the splitting theorem to 
reduce proofs of general theorems to the zero-dimensional case. 

Other ways of defining dimension were also developed. Lebesgue introduced 
(in effect) what is now called the "covering dimension", dim, defined by: 
dim X < n provided every finite open cover °U of X has a refinement V for 
which no point belongs to more than n + 1 sets in V. This says, roughly, that 
X can be approximated by polytopes (the nerves of suitable covers) of 
dimension at most n, and suggests that—for compact metrizable spaces at 
least—the dimension of X can be characterized by methods of algebraic 
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topology. This was achieved by P. Alexandrov, who succeeded in characteriz­
ing dim X (for compact metrizable X) in terms of homology groups. (Nowa­
days one uses a cohomology version instead; it is neater and applies to more 
general spaces.) This algebraic approach led Pontrjagin to settle an old 
question by showing that inequality in the product theorem can occur even for 
compact spaces; in fact, as he showed, there is a 2-dimensional compactum 
whose product with itself has dimension 3. 

Many other aspects of dimension have been investigated, for instance: 
continuous maps that raise (or lower) dimension; maps into spheres; infinite 
dimensionality of various kinds; other definitions of dimension that depend on 
the metric on the space; and a remarkable connection with measure theory, via 
Hausdorff dimension. An admirable account of the "classical" theory for 
finite-dimensional separable metrizable spaces (but omitting metric-dependent 
dimension functions) is provided by the book of Hurewicz and Wallman [2]. 

But inevitably one moves on to consider more general spaces; and there a 
major difficulty arises. As was pointed out in [2], the success of the "classical" 
theory is largely due to the fact that many different definitions of dimension 
coincide for separable metrizable spaces X; in particular, ind X = dim X = 
Ind A", the "large" inductive dimension (defined like ind but with "point" 
replaced by "closed subset"). For general spaces this is no longer the case. 
However, it was shown (independently) by Katêtov and Morita in the 1950s 
that, at least for metrizable spaces, dim = Ind and a large part of the theory 
can be carried over to the nonseparable case—very roughly, everything not 
involving the originally defined "ind". That "ind" is inappropriate here was 
shown by a complicated example, due to Prabir Roy [8], of a complete metric 
space with dim = 1 and ind = 0. Large parts of the theory have been extended 
even further, mostly to spaces satisfying various strengthened forms of normal­
ity; some restrictions have to be made, since in the absence of normality the 
subspace and sum theorems need not hold. The subject has continued to be 
under active and rapid development, so a revised edition of Nagata's Modern 
dimension theory [6] is most opportune. 

Like the first edition, this one focuses on metrizable spaces, in the main, 
with Ind ( = dim) as the basic dimension function. After a brief introductory 
chapter, summarizing the necessary background from general topology, the 
book plunges into the detailed study of the fundamental properties of dimen­
sion in general metrizable spaces. The going is tough but rewarding. There 
follow chapters on mappings and dimension, and on the dimension of separa­
ble metrizable spaces, including some special properties of Euclidean spaces 
and the connection with measure. In the next chapter, dimension is char­
acterized by the existence of special coverings and special metrics—for ins­
tance, the well-known theorem (of Ostrand and Nagata) that dim X < n if and 
only if X has a compatible metric p such that, for every n + 3 points x, yv 

yi> • • • > yn+i °f % t n e r e a r e distinct indices /, j such that p(yt, yj) < p(jc, yt). 
Chapter VI deals with infinite-dimensional spaces: large and small trans-

finite dimension (extending Ind and ind transfinitely), weak and strong 
infinite-dimensionality, and countable dimensionality are considered. Chapter 
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VII deals with nonmetrizable spaces. The sum theorem for dim is extended 
(following Ostrand) to locally finite systems of closed subsets in arbitrary 
spaces; then the chapter concentrates on normal (T4) spaces. Here dimX< 
Ind X, and a significant part of the theory still holds for dim. The sum and 
subspace theorems for Ind, due to Dowker, come next; they assume "total 
normality" (that is, normality plus: each open set U has a cover by open Fa 

sets that is locally finite in U). The final chapter, on dimension and cohomol-
ogy, gives a rapid outline of the background in algebraic topology that is 
required, and proves (inter alia) that, for a finite-dimensional paracompact 
Hausdorff space X, dim X < n if and only if, for every integer m > n and 
closed subset C of X, the natural homomorphism of Hm(X) into Hm(C) is 
surjective. The chapter concludes with a short discussion of Menger's old 
problem, now solved partly (but not completely), of finding a "good" (nonre-
cursive) axiomatic characterization of dimension. 

It may be of interest to compare this book with some other standard 
treatments of dimension theory. The first book on the subject, by Menger [4], 
though written with pioneering enthusiasm, is perhaps now of mainly historical 
interest. The discussion in [3, §§25-28 and 45] covers the essentials of the 
"classical" separable metric case, in a tour-de-force of elegant compression. 
The treatment in [2] is probably still the best introduction to the subject for a 
neophyte. Nagami's book [5] is aimed mostly at normal, usually paracompact, 
spaces, though with excursions into metrizable spaces and, in particular, a 
useful treatment of metric-dependent dimension functions. It also includes an 
extensive treatment (by Y. Kodama) of cohomological dimension theory, with 
applications to the dimension of products and to generalized Cantor mani­
folds. (A nongeneralized Cantor manifold is a compactum of dimension n that 
cannot be disconnected by a subset of dimension < n — 1.) The book by 
Pears [7] also concentrates on general spaces, even more so than [5]; it includes 
a chapter on local dimension and explores a number of significant examples, 
including a careful exposition of Roy's example [8]. It ends with a detailed 
account of Katêtov's functional-algebraic method for the dimension of metriz­
able spaces. Engelking's [1] is a textbook; it provides exercises and moves at a 
somewhat more leisurely pace, beginning with the separable metrizable case 
and going on to hereditarily normal and to compact spaces before ending with 
general metrizable spaces. Neither [1] nor [7] includes any algebraic topology. 

The most meaningful comparison is of course with the first edition [6]. 
Besides many minor amplifications and clarifications of the arguments, and a 
number of simplifications, the new edition includes some interesting char­
acterizations (due to Pontrjagin-Schnirelmann and to Janos) of dimension by 
global properties of covers; an improved treatment of dimension-characterizing 
metrics; and greatly extended treatments of infinite-dimensional spaces and of 
nonmetrizable spaces. The bibliography has been enlarged and modernized (to 
1981). In fact, there is only one respect in which this second edition is not a 
distinct improvement on the first—namely, legibihty. The present edition has 
been reproduced (and reduced) from typescript; this may have been unavoida­
ble economically, but has the unfortunate consequence that the writing is too 
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small and the symbols insufficiently varied. The first edition is much easier to 
read; but the present one is even more worth reading. It gives a very good 
account of its subject, and its title is well deserved. 
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One hundred years ago there appeared in New York a book by William K. 
Clifford [7] containing the following passages: 

(i) Our space is perhaps really possessed of a curvature varying from point to 
point, which we fail to appreciate because we are acquainted with only a small 
portion of space... 

(ii) Our space may be really same (of equal curvature), but its degree of 
curvature may change as a whole with the time... 

(iii) We may conceive our space to have everywhere a nearly uniform 
curvature, but that slight variations of the curvature may occur from point to 
point, and themselves vary with the time... We might even go so far as to 
assign to this variation of curvature of space 'what really happens in that 
phenomenon which we term the motion of matter'. 

It is impressive and moving to read this intuitive description of the funda­
mental ideas of the theory of general relativity written over thirty years before 
Albert Einstein gave the theory its final form. The subtle relations between 


