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ASYMPTOTIC COMPLETENESS OF SHORT-RANGE 
MANY-BODY SYSTEMS1 

BY I. M. SIGAL AND A. SOFFER2 

ABSTRACT. We announce a proof of asymptotic completeness for quan­
tum mechanical systems consisting of arbitrary numbers of particles in­
teracting via short-range forces (see conditions (A)-(D) below). A com­
plete proof is given in [SigSof 1]. Previously, there were only partial 
results in this direction (see reviews and discussions in [Enss, RSIII, 
sigi). 

Consider an iV-body system in the physical space R17. The configuration 
space in the center-of-mass frame is X = {x G R^N | J2mixi — 0} with the 
inner product (x,y) = 2^rmxi • y{. Here mi > 0 are masses of the particles 
in question. The Schrödinger operator of such a system is 

# = - A + V(x) onL2(X). 

Here A is the Laplacian on X and V(x) = X^ù( x * ~ xj)- We assume that 
the potentials Vij are real and obey (with {x) = (1 + \x\2)1/2) 

(A) Vij(y) are A^-compact, 
(B) (y)1+0\^Vij{y)\ are Ay-bounded for some 0 > 0, 
(C) |y|2AVJj(y) are Ay-bounded, 
(D) (y^Vijly) are Ay-bounded. 

Due to condition (A), H is selfadjoint on D(H) = D(A) by the Kato theorem 
(see e.g. [RSII]). By a short-range system we understand a system obeying 
(A) and (D) with /i > 1. Our main result is 

THEOREM 1. Assume an N-body system is described by potentials obeying 
conditions (A) -(D) with /i > 1. Then asymptotic completeness holds for this 
system. 

Conditions (B)-(D) can be relaxed if we exercise more care in our estima­
tion. 

Denote by o, 6,..., partitions of the set { 1 , . . . , N} into nonempty disjoint 
subsets, called clusters. The relation b C a means that b is a refinement 
of a. We assume that partitions have at least two clusters. We define the 
intercluster interaction for a partition a as 

Ia = sum of all potentials linking different clusters in a, 

and the Hamiltonian for the system composed of the noninteracting clusters: 
Ha = H — Ia. Furthermore, Ha stands for the Hamiltonian of the same 
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system but with the centers-of-mass of the clusters fixed at the origin. These 
operators are, clearly, selfadjoint. 

An iV-body short-range system described by a Hamiltonian H is said to 
be asymptotically complete if for any t/j orthogonal to the eigenfunctions of H 
there exist Hilbert space vectors I/J^ s.t. 

^ v - E e " t H o t ^ 0 as t —• ±00 

and the corresponding statements hold for any of its subsystems (see [Enss, 
RSIII, Sig] for different, equivalent definitions). 

The feature which distinguishes an iV-body Schrödinger operator from a 
two-body one, creating a different level of complexity, is that in the many-
body case the potential V(x) does not vanish as |x| —> oo along the planes 

Xa = {x G X\ xi = Xj if i and j belong to same clusters of a} 

(the configuration spaces of the relative motion of the clusters in decompo­
sition a). This feature leads to the multichannel structure of the scattering 
process. Namely, as t —» ±oo, the Schrödinger state ipt = e~xHt^ approaches 
a superposition of waves each of which propagates freely along a certain Xa 

and with the Hamiltonian |pa|
2> where pa = — (̂grad along Xa), with the 

motion in the orthogonal plane, X © X a , bounded and described by an eigen-
function of the internal Hamiltonian Ha. Each of these waves represents a 
different scenario for the scattering process to develop according to. These 
scenarios are called channels. A measurement always finds a system in ques­
tion in one of the possible channels. Put differently, since the free motion is 
asymptotically a classical motion, the above picture describes an evolution 
of stable quantum clusters which becomes classical as t —> ±oo. This mix­
ture of classical and quantum-mechanical behavior is the unique feature of 
the many-body scattering theory. We contend that there is a (phase-space) 
tunneling between certain channels (see [SigSof 2]) and it produces a motion 
in the classically forbidden region for arbitrary large times. This phenomenon 
occurs only for N > 4. The fact that asymptotic completeness nevertheless 
holds is due to a certain self-averaging process (see below), and we expect that 
the statement of asymptotic completeness cannot be strenghened in an essen­
tial way (e.g., by requiring decay of the probabilities as t'1). This borderline 
nature is, probably, one of the reasons why the problem eluded a solution for 
such a long time. 

A word about notations. The dual space to X is denoted by X', etc. Given 
generic vectors x G X and k G X', their projections on Xa and Xf

a are denoted 
by xa and kai respectively. Finally, p = —i grad. 

Given E, we define the phase-space domains 

PS± = {J{(x,k)elxa\ 
\,a 

u* 
L6=?a 

x X'\ xa\\ka,\ka\
2 = E - \ 

where u\\v means that the vectors u and v are parallel and we use the agree­
ment that ap(H

a) = {0} for a, the partition into the N clusters (1) , . . . , (N). 
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Here the union extends over all (A,a) satisfying À G crp(H
a) fl (—00, E] ^ 0 . 

PS g describe different possibilities of outgoing/incoming free motion of non-
interacting, stable clusters of the total energy E. The restriction on their 
kinetic energy (|fc0|

2> where a is a cluster break-up realized in the process) 
stems from the energy conservation law and the fact that the internal energy 
of the stable clusters must be given by an eigenvalue of their internal Hamilto-
nian {Ha). The next theorem shows that as t —> ±00 the quantum evolution 
e-%m^^ w j t ] 1 ^ in a s m a l l energy interval around E, becomes localized in 
the phase-space region PS^. We begin with some definitions. Operators 
of the following form appear naturally in our analysis: J2Ji(x)fi(p)i where 
the sum is finite, all functions are smooth and bounded and, in addition, j% 
are homogeneous of degree 0 for |x| > 1. Such operators will be called the 
phase-space operators. ^2jifi is said to be supported in the phase-space region 
(JJ(suppyi) x (supp fi)]. Given E, we say that a subset of the phase space 
X x X' is a future/past propagation set at the energy E if for any phase-space 
operator J , supported outside of the set in question, there is a small interval 
A around E s.t. for any ij) G Ran P A (H) 

/•±oo 

(1) ± 
Jo 

with C < 00 and independent of \j). 
REMARK 2. this definition is equivalent to one in which the phase-space 

operators are replaced by more general pseudodifferential operators. However, 
since, as was mentioned above, the phase-space operators arise naturally in 
our approach we restrict our definitions to such operators. Much more im­
portantly, one can refine the definition of the propagation set by introducing 
the coefficient of proportionality into the relation xa||±fca—the time 
([SigSof 2]). 

PROPAGATION THEOREM. Let (A)-(C) be satisfied {note: condition (D) 
is not required). Then PS^j is the future/past propagation set at the energy 
E. 

To prove this theorem we use positivity estimates of the commutators of 
H with certain phase-space operators and with functions of the self adjoint 
operator 7 = \{x • p + p • x) where x = x/(x). Basic to these estimates is a 
delicate channel expansion of P&(H)i[H,^j\P&(H). 

Now we proceed to the second ingredient of our approach. We use the 
standard notation \x\a = min{|x; — Xj\ \ i and j belong to different clusters of 
a}. This is the intercluster distance in the decomposition a. 

CHANNEL DECOUPLING THEOREM. Given E, there are phase-space op­
erators ja{x,p), which form a partition of unity: Yli3a(xiP) — 1? w^ the 
following properties: 

(2) ja are supported in {(x, k) G X x X'\ \x\a > ô\x\} for some S > 0; 
(3) [Ha,ja] = (\p\-bounded operator) x (phase-space operator supported 

away from PSE = PS^ U PS£) . 

-iHt 1> dt < CUf 

file:///p/-bounded
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Relation (2) shows that ja is supported in the region where the clusters in 
a move away from each other and relation (3) shows that the "boundary", 
supp([ifa,j0]), of ja lives in the region where no propagation takes place. 

To derive asymptotic completeness (Theorem 1) from the propagation and 
channel decoupling theorems we introduce the Deift-Simon wave operators for 
given E and sufficiently small A 3 E: 

(4) Wt = s-lim eiH^ja{xiP)e-iHt 

£ — • ± 0 0 

if the limits exist on Ran PA {H). (Deift and Simon [DS] have introduced 
such operators for a partition of unity depending only on x.) After this, the 
main steps are as follows. 

LEMMA 3 (Deift-Simon argument). If the limits (4) exist on Ran PA then 
asymptotic completeness holds on A. 

PROPOSITION 4. Let (A)-(D), with // > 1, hold and let the channel de­
coupling and propagation theorems hold. Then the Deift-Simon wave oper­
ators W^ exist on Ran P A , provided A is disjoint from the thresholds and 
eigenvalues of H. 

SKETCH OF THE PROOF. Let Wa{t) = eiHatja{x,p)e~iHt. By the funda­
mental theorem of calculus 

(5) Wa(t) = ja + i [ eŒ«s(Haja - jaH)e~Œs ds. 
Jo 

We have Haja —jaH = [Ha,ja] —Jala- Due to property (2) of ja and condition 
(D) on the potentials, jalafâ+i)"1 = 0( |x | - M ) . (This is the only place where 
condition (D) is used!) Then a result of [PSS] (a local if-smoothness of 
(x)~(l/2}~£ shows that jaIa yields a convergent contribution to (5). To show 
that [Ha,ja] gives a convergent contribution to (5) we use the homogeneity 
of j a in x for |x| > 1 and the fact that due to (3) [Ha,ja] is supported away 
from the propagation set PSE- The latter fact allows us to use estimates (1) 
of the propagation theorem. 
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