
70 BOOK REVIEWS 

on intervals and "was assumed only to be finitely additive and nonnegative, 
and it was that proof of the monotone convergence theorem that brought 
countable additivity into the theory ". The point the reviewer would like to 
make is that starting from an elementary definition does not always protect 
someone from paying the price later on in the theory. 

This book is very well written, contains some very good exercises, and proofs 
are given in full detail. It is an honest attempt by somebody who loves measure 
theory to try to make this very important tool (the Lebesgue integral) accessi­
ble to a wide audience. 

How well this book will succeed in achieving its avowed purpose of making 
the unified treatment of integration widely accepted is perhaps better judged 
by how fast and how often this book, or similar books, will make it to the 
classroom. 
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This huge book, a translation of the 1978 Polish original [1], is clearly 
intended by the author to be a study of the relations between the representa­
tion theory of groups and the special functions of mathematical physics. What 
has emerged is somewhat more restricted: a detailed and extensive study of the 
theory of spherical functions and harmonic analysis on symmetric spaces, and 
the application of these theories to certain special functions. The so-called 
special functions of mathematical physics are those useful functions which 
arose when physicists obtained explicit solutions of the partial differential 
equations governing physical phenomena—e.g., the heat, wave, Helmholtz, 
and Schrödinger equations—through separation of variables. With the devel­
opment of quantum mechanics in the 1920s and 1930s, it became evident that 
there were relations between the symmetries of the partial differential equa­
tions and some of the special functions that arose as solutions of these 
equations. However, the first clear formulation of such a relationship appears 
in Eugene Wigner's 1955 unpublished Princeton lecture notes. The first exten­
sive published treatment of the theory was the 1965 monograph of N. J. 
Vilenkin in which the achievements of the Gel'fand school in the theory of 
spherical functions were utilized [2]. This was followed by J. D. Talman's book 
in 1968, based on Wigner's lectures [3]. In these works the special functions 
occur as matrix elements of irreducible representations of the fundamental 
symmetry groups of physics. The matrix elements are defined with respect to a 
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basis which, typically, is chosen to have simple transformation properties 
under the action of some subgroup, such as a maximal compact subgroup. 
Thus, Bessel functions appear as matrix elements of representations of the 
Euclidean motion group in two-space. Jacobi and Legendre polynomials are 
associated with representations of SU(2), Gegenbauer polynomials arise from 
representations of SO(«), Jacobi functions are associated with SL(2, R), and 
Laguerre polynomials arise as matrix elements of representations of the 
Heisenberg group. 

Some of the basic properties of these functions follow easily from this 
relationship. Thus, the group multiplication rule for the matrix elements leads 
to addition theorems for the special functions. The Peter-Weyl theorem and the 
orthogonality relations for matrix elements of irreducible group representa­
tions lead to integral relations and completeness theorems for special func­
tions. By passing from the group to the corresponding Lie algebra, one obtains 
differential equations and differential recurrence relations for the matrix 
elements. The natural abstract setting for all these results is the theory of 
spherical functions and harmonic analysis on symmetric spaces, which has a 
beautiful presentation in the textbooks of Helgason [4, 5]. 

Work on the interpretation of special functions as spherical functions by no 
means ended with the books of Vilenkin and Talman, however. For instance, 
there is the reviewer's book [6] in which local Lie group methods are used to 
generalize the classes of special functions that can be treated via group theory. 
In this work it is shown that the factorization method of Inoui [7] and of Infeld 
and Hull [8] for solving eigenvalue problems associated with the Schrödinger 
equation has a Lie algebraic interpretation. Koornwinder [9-11] used the 
theory of spherical functions, at least in part, to establish a new general 
addition theorem for Jacobi polynomials (extending the classical addition 
theorem for Gegenbauer polynomials). It is known that all spherical functions 
on symmetric spaces can be interpreted as families of orthogonal polynomials. 
Askey and Wilson [12] reinterpreted the Racah coefficients for representations 
of SU(2) as famihes of orthogonal polynomials and then extended these to find 
a general set which contains, strictly, all the spherical functions on symmetric 
spaces. There has been considerable progress in the study of special functions 
that arise as spherical functions associated with finite groups, particularly in 
the context of 2-point homogeneous spaces. For example, the Hahn and 
Krawtchouk polynomials, classical discrete orthogonal polynomials, occur in 
this way. Furthermore, for Chevalley groups over the finite field GF(q) one 
obtains orthogonal polynomials given by basic hypergeometric series (^-series). 
See the paper by Stanton [13] for an excellent survey. 

As mentioned previously, the special functions of mathematical physics arise 
via separation of variables in the partial differential equations of physics. It is 
simply not the case that all these functions are spherical functions (or that they 
arise as matrix elements of group representations). For example, the functions 
of Mathieu, Lamé, and Ince, elhpsoidal wave functions, products of parabohc 
cylinder functions, and many multivariable hypergeometric functions are not 
spherical functions even though they arise via separation of variables. In the 
reviewer's book [14], based on work carried out jointly with E. G. Kalnins, it is 
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shown that these functions can be characterized as eigenfunctions of a com­
plete set of commuting operators that are second-order elements in the 
enveloping algebra of the Lie algebra associated with the symmetry group of 
the original partial differential equation (or system of equations). Thus, in 
effect, all of the standard functions of mathematical physics can be treated via 
group representation methods, but many of them do not yield to the methods 
presented in the book under review. 

With this very sketchy survey of recent work out of the way, we turn to the 
book itself. It is divided into three approximately equal parts. In the first part 
the author develops from first principles the basic facts relating Lie groups and 
Lie algebras, homogeneous spaces, the representation theory of locally com­
pact groups, direct integrals of group representations, decomposition theory of 
unitary representations, representations of compact groups (including the 
Frobenius theorem and the Peter-Weyl theory), and the theory of spherical 
functions. In Part II the theory of spherical functions is applied to obtain 
specific facts about special functions. The special functions treated, all ob­
tained as matrix elements, are the gamma function, Bessel functions, Jacobi, 
Legendre, Gegenbauer, and Laguerre polynomials, as well as Jacobi and 
Legendre functions. Attention is paid to harmonic analysis involving these 
functions. As the author states, Part II is a modification of Vilenkin's mono­
graph [2]. Part III is based on Helgason's monograph [15] and contains an 
introduction to the geometry of general symmetric spaces and to harmonic 
analysis on these spaces. It repeats some of the material in the earlier sections 
of the book, but at a higher level. Such topics as affine transformations, 
Riemannian symmetric spaces, the structure theory of semisimple Lie algebras, 
the Harish-Chandra c-function, the Radon transformation, and the Paley-
Wiener theorem are treated. 

The presentation is clear, and many examples and exercises are provided. 
Typographical errors are numerous but mostly harmless. (The most spectacular 
of these is the information about Klein's Erlangen program of 1972!) The 
author covers an immense amount of material at the expense of stating dozens 
of important theorems without proof (and occasionally without a reference). 
Since even such basic results as the connection between a Lie group and its Lie 
algebra are stated without proof, some readers may be frustrated. (Many 
theorems are proved, however). The material in Parts I and III is presented at a 
high level of generality, and many theorems are quoted which are not needed 
for application to special functions in Part II. 

This book is based heavily on the monographs of Vilenkin [2] and Helgason 
[15] and is unique in the sense that it intertwines these two approaches. 
(Remarkably, Helgason's book [5] is not referenced.) With the exception of two 
sections on the Radon transform, adapted from Helgason, virtually all results 
date from prior to 1970, although the references at the end of the book do 
contain later work. The reader is never told that there is a difference between 
spherical functions and special functions. Koornwinder's addition theorem and 
Koornwinder, himself, are not mentioned, nor are spherical functions associ­
ated with finite groups. 



BOOK REVIEWS 73 

In conclusion, the author's presentation is attractive and lucid, quite suitable 
for a graduate level course on spherical functions with applications to special 
functions. However, for a modern unified approach to special functions based 
on group theory, one should look elsewhere. 
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The umbral, or symbolic, notation was originated by Aronhold and Clebsch 
in the middle of the nineteenth century and proved to be an important tool in 
the theory of algebraic invariants. It was later taken on by BHssard, who 
applied it to derive various algebraic and combinatorial identities. 

The idea behind the umbral notation is to start with an algebraic identity 
involving powers {ak}, {bk} and replace ak <- ak, bh <- bk, where {ak}, {bk} 


