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and testing becomes largely symbolic. More need by mathematicians for a
mixed APL LISP environment may push computer science to develop a good
one. In the world of systems, traffic, not theory, promotes development.

Since a significant part of mathematics education deals with conjecture and
proof, this book suggests how the computer could play an important part. For
example, the study of calculus, both elementary and advanced, would benefit
enormously from the inclusion of an experimental component that goes far
beyond the usual elementary numerical analysis applications. Grenander is
implying that with skill in programming and use of APL, the experiments can
be significant and the programming labor need not dominate the effort
required to master either the art or mechanics of mathematics.
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Set theory and topology have been bedfellows for a long time. Hausdorff’s
classic text Mengenlehre [2], for example, devotes only four chapters to set
theory; the remaining six, which comprise three-quarters of the book, deal with
point-set topology, especially the theory of metric spaces. Perhaps a better
translation of the title would be The theory of point sets. A similar approach is
found in Kuratowski’s book [3], except that he devotes even less space to set
theory, and he has the decency to entitle the book Topologie. And while these
books were being composed, Sierpinski was gathering the material, largely
topological, which would make up his book [5] on the continuous hypothesis.

More recently, after a period during which the two subjects developed
separately, there has been a dramatic rapprochement, the unifying factors being
Cohen’s discovery of forcing and the subsequent explosion of work in set
theory. Consider, for example, the history of the normal Moore space conjec-
ture, which asserts that every normal Moore space is metrizable. (See M. E.
Rudin’s monograph [4] for an account of all but the most recent parts of this
story.) First F. B. Jones showed that if 2% < 2™ then every separable normal
Moore space is metrizable. Then Bing showed that if there is Q-set, i.e., an
uncountable set of real numbers every subset of which is a relative F,, then
there is a nonmetrizable separable normal Moore space, and later Silver
deduced from Martin’s Axiom (see below), which had recently been shown
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consistent, that Q-sets exist. Next Peter Nyikos used a strong axiom about the
extension of product measures, which he called PMEA, to deduce the full
normal Moore space conjecture, and Kunen showed that relative to the
existence of a very large cardinal, namely one which is strongly compact and,
hence, at least measurable, PMEA is consistent. Finally, Fleissner showed that
if the continuum hypothesis holds or if there are no inner models of set theory
with many measurable cardinals, then the normal Moore space conjecture is
false.

Here, then is a thoroughly topological problem that involves most of the
aspects of modern set theory: forcing, constructibility, and large cardinals. It
seems very likely that the “solution” of this and many other old topological
problems is not quite what the original formulators had in mind. The Moore
space problem also illustrates the peculiar sociology of work in set-theoretic
topology, as it is called nowadays. It turns out that set-theoretic intuition and
topological intuition have not been passed out equally, and most mathemati-
cians incline strongly toward one side or the other. Only a privileged few are
truly ambidextrous. This tends to result in the formation of symbiotic pairs, in
which a topologist will formulate and translate topological problems for a set
theorist to attack. The idea of thus doing “applied” set theory holds great
charm for set theorists, who have always regarded themselves as the purest of
pure mathematicians.

But it is not just a question of basing topology on set theory. It turns out
that many important set-theoretic ideas, including forcing itself, can be ex-
pressed topologically. The connection runs as follows. Forcing is usually done
with respect to a partial ordering P where the elements of P, called conditions,
are thought of as conveying partial information about a new universe of set
theory being constructed. If p < ¢ then let us say that p extends q. Now every
partial ordering is equivalent, for forcing purposes, to a unique complete
Boolean algebra in which it is embeddable (hence the counterintuitive defini-
tion of “extends” as “ < ), and the Boolean algebra may be studied topologi-
cally in terms of its Stone space. But the connection goes farther than that.
Recall that an open set in a topological space is regular open iff it is the interior
of its closure; intuitively, it has no cracks in it. It is a straightforward exercise
to see that the regular open sets in X form a complete Boolean algebra RO(X),
which may now be used for forcing purposes. In fact, if P is a partial ordering
which is given a topology by declaring 7, = {q € P: g < p} open for all
p € P, then RO(P) is the complete Boolean algebra equivalent to P mentioned
above. One can also compute the Stone space of RO(X), which is called the
Gleason space G(X) of X, and which can be substituted for X for many
purposes. In general, G(X) is not homeomorphic to X since, for example,
G(X) is always compact and zero dimensional.

For a set theorist the nicest property a partial ordering can have is the
countable chain condition. If p,q € P then we can think of the information
embodied in p and g as being inconsistent, and we say p and g are incompati-
ble, if no r in P extends both p and g¢. P has the countable chain condition (the
c.c.c) if every pairwise incompatible subset of P is countable. Intuitively, there
cannot be very much disagreement within P. Such partial orderings are
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important partly because forcing with them cannot destroy existing cardinal
numbers

When this idea is translated into topology, one arrives at the notion of a
c.c.c. space, which is taken to be a (regular) space with the property that every
pairwise disjoint system of open sets is countable. Martin’s Axiom, which is
usually phrased as an assertion about c.c.c. partial orderings, becomes the
statement that no (infinite) compact c.c.c. space is the union of fewer than 2%
nowhere dense sets, and thus has a clear meaning as a kind of strong Baire
category theorem.

Since mathematicians will never leave a good idea alone, there has naturally
been a lot of work on variants of the c.c.c. For example, it is not guaranteed
that the product of two spaces (or partial orderings) with the c.c.c. has the
c.c.c. This is true under Martin’s Axiom if 2%¢ > N, but false if the continuum
hypothesis holds (due to Laver and to Galvin (with an easier proof)). On the
other hand, if we make a stronger requirement on the spaces, we may recover
the product theorem. Say X has caliber ( precaliber) ¥, if every uncountable
collection of open sets has an uncountable subcollection with nonempty
intersection (with all finite intersections nonempty). Then these notions are
preserved under the formation of products, and they provide the stepping-off
point for the book of Comfort and Negrepontis, Chain conditions in topology.

The authors expect the reader to come to the book prepared, so they do not
offer much motivation for their definitions. It may be worth remarking,
therefore, that the first author has written a very nice introduction, specifically
for this book, which, unfortunately, appears elsewhere [1]. In particular, he
defines there what he means by a chain condition on a space as “roughly
speaking, a condition concerning one or more cadinal numbers and intersec-
tions of systems of open sets”. This is a pretty broad interpretation, but it is
still fundamentally topological, and the set theorist will find several species of
chain conditions not treated here.

Nevertheless, much material is packed into this small book. In addition to
calibers and precalibers, the authors treat compact-calibers and pseudo-com-
pactness. A space X has compact-caliber a if given a nonempty sets there is a
compact set in X which meets a of them, and X is pseudo-a-compact if given a
nonempty sets there is a point x in X such that every neighborhood of x meets
a of the open sets. In fact, these notions are greatly generalized; the authors
define caliber (a,,y), compact-caliber (a,8,y), and so forth, and when they
consider preservation under products they treat box products of various sizes
as well as the usual product.

In addition to results of Argyros, Comfort, Negrepontis, Tsarpalias and
other topologists, the authors include set-theoretical arguments due to the likes
of Galvin, Hajnal, Laver and Shelah. Although most of the results have already
been published, they are scattered through many journals, and are brought
together here for the first time. This book will be a valuable source for
topologist and set theorist alike, although set theorists may experience a little
frustration with it. The lack of motivation is an annoyance, there is no
discussion of independence results except in notes at the ends of several
chapters, and there are some minor notational irregularities, such as referring
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to 8-systems as “quasi-disjoint families”. But this is hardly serious and is due
simply to the fact that the authors are topologists.

As a set theorist, this reviewer has naturally required the assistance of a
topologist during the preparation of this review and would here like to thank
Frank Tall for some helpful discussions. All opinions expressed here, however,
are due to the reviewer.
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Many optimization problems arise in connection with systems which incor-
porate discrete structures for which the mathematics is combinatorial rather
than continuous: one thinks of sequencing, scheduling and flow-problems and
of the great variety of questions which can be reformulated as path-finding,
circuit-finding or subgraph-finding problems on an abstract graph. To match
the growing interest in such problems arising from, for example, operations
research and systems theory, the past thirty years have witnessed a vigorous
growth in the theory and practice of combinatorial optimization.

A related, but perhaps less well-known, development has been in the
application of ordered algebraic structures to optimization problems. This
application is made relevant by the fact that many optimization questions
depend essentially on the presence of two features: an algebraic language
within which a system can be modelled and an algorithm articulated; and an
ordering among the elements which enables a significance to be given to the
concept of minimization or maximization. A familiar example here is a
well-known method of resolving degeneracy in linear programming which
depends upon the fact that the simplex algorithm may be extended to linear
programs in which values are taken in a certain ordered ring.

By adopting this algebraic point of view we can make useful reformulations:
certain bottleneck problems become algebraic linear programs; certain



