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those who may be quite familiar with the general theory, will find much of 
interest. In sum, this is an interesting book, which well deserves the attention 
of those with an interest in the analytic side of several complex variables. 
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The study of (totally) ordered fields and groups is a fairly old discipline with 
venerable roots, the earliest contributions to which go back to the beginning of 
the century, with results by Hubert, Holder, and Hahn. Specifically, Hilbert 
(1899) considered a special ordered field of real-valued functions in order to 
establish the independence of certain axioms of geometry, Holder (1901) 
showed that every archimedean ordered group can be embedded, as an ordered 
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group, into the additive group of real numbers with its natural order, and 
Hahn (1907) proved that every ordered abelian group is isomorphic to an 
ordered subgroup of a certain group H(T,R) of lexicographically ordered 
real-valued functions on some ordered set. The precise meaning of the latter 
result is as follows: Given an ordered set T, one considers those functions u: 
r -> R for which the support S(u) = {y\u(y) ¥= 0} is dually wellordered with 
respect to the ordering of T. It is immediate that these functions form a 
subgroup of the usual group of all real-valued functions on T, and that putting 
u > 0 iff u(a) > 0 for a = maxS(w) then defines an ordered group, the 
so-called Hahn group H(T,R). Hahn further showed that, whenever T is an 
ordered abelian group rather than merely an ordered set, H(T,R) admits a 
multiplication, given by convolution: u * v(y) = Hu(a)v(fi) (aft = y), so that 
H(T,R) becomes an ordered field. Note that for T = Z, with the dual of its 
natural ordering, H(T,R) is exactly the field of formal Laurent series Hcnx

n 

(n :» - oo) over R, where an element is positive iff, in the usual order of the 
exponents n e Z, its first nonzero coefficient is positive. 

The beauty and scope of its results make Hahn's 1907 paper a milestone in 
the subject, even if it was rather difficult to read. Moreover, the basic approach 
allowed for refinements and ramifications which were pursued in later years by 
a considerable number of authors. Typical examples would be the generaliza­
tion of the Hahn Embedding Theorem to lattice-ordered groups by Conrad, 
Harvey, and Holland (1963) and the construction of more general fields of 
formal power series than the fields H(T,R) for an abelian ordered group T in 
which R is replaced by an arbitrary ordered field K, convolution is modified by 
the intervention of a suitable factor system (cap)a ^ e r on T with values in K so 
that uv(a) = Hcpyu{fi)v(y) (fly = a), and T is taken as an arbitrary ordered 
group. A naturally arising problem in this context is to see how appropriate 
properties of T and K determine desired properties of these ordered fields, and 
there are various interesting results concerning this. 

A very substantial new idea was introduced into the subject by Artin and 
Schreier (1927) in their theory of formally real fields. The familiar property of 
R that a\ + a\+ • • • + a\ = 0 implies a1 = a2 = • • • = an = 0 for any al9 

ö 2 , . . . , ö „ G R i s obvioulsy shared by any ordered field, and may therefore be 
viewed as a purely algebraic first order residue of the a priori not first order 
property of a field to possess a compatible ordering. A field which satisfies the 
stated identical implications is called formally real. The significance of this 
notion for the present topic is the remarkable fact that the formally real fields 
are indeed exactly the orderable fields, but this by no means exhausts its 
usefulness. It is natural, at least with the wisdom of hindsight, to pay special 
attention to those formally real fields which are "algebraically maximal" in the 
class of all such fields, i.e. which have no proper algebraic extension still 
formally real. These real closed fields, of which R is one, are obviously rather 
more similar to R than mere formally real fields, and a rich and attractive 
theory, beginning with the original work of Artin-Schreier, but still developing 
in the recent past, testifies to this fact. Among the classical results of particular 
importance are that every formally real field has an essentially unique real 
closure, that a real-closed field has exactly one compatible order, and that 
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several facts of ordinary calculus hold for polynomials over real-closed fields. 
It is thus quite remarkable—although that is not the entire purpose of the 
enterprise—how much of what one considers analysis can in fact be captured 
in algebraic terms. 

A further new concept, which has its own independent purpose but also 
plays an interesting role in the theory of ordered fields, is that of a valuation of 
a field K, by which is meant a homomorphism v of the multiplicative monoid 
of K into an ordered abelian group T, augmented by a zero 0 as smallest 
element, such that v(a) = 0 iff a = 0 and v(a + b) < max{v(a), v(b)} for all 
a, b e K. For any valuation v of a field K, A = {a\v(a) < e} (e the unit of T) 
is a subring of K such that a G. A or a"1 e A for any a e K. Such subrings of 
K are called valuation rings, and any of these determines a valuation of K in 
such a way that, up to a natural notion of isomorphism, valuations and 
valuation rings correspond to each other uniquely. The link with ordered fields 
is provided by the fact that any such field K has a natural valuation v which is 
order compatible in the sense that 0 < a < b implies v(a) < u(b) for all a, 
b G K. In general, the order compatible valuations of an ordered field are 
suggestively characterized as those for which the associated valuation ring is 
convex in K. 

For any valuation y o n a field K, the associated valuation ring A is local, i.e. 
has a unique maximal ideal M, and hence determines the field Kv = A/M, the 
associated residue class field. On the other hand, v gives rise to the value group 
Tv, the subgroup of T consisting of the v(a), a =£ 0 in K. Kv and 1̂  are 
important features of the valuation v. Of particular interest are extension fields 
L of K with a valuation w extending a given valuation v on K such that the 
residue class field and the value group for v and w are the same. Such 
extensions are called immediate, and if there are no proper immediate exten­
sions of K relative to v, one calls v a maximal valuation. There is a fairly 
elaborate theory involving these notions, such as characterizing maximal 
valuations in terms of the somewhat messy concept of pseudoconvergence due 
to Ostrowski 1935 (Kaplansky 1942), establishing the existence, and unique­
ness if the residue class field has characteristic zero, of maximal immediate 
extensions (Kaplansky 1942), and characterizing properties of K by those of Kv 

and Tv for a given valuation v, especially a maximal one. Of special importance 
for the theory of ordered fields are valuations which are maximal and order 
compatible. Perhaps the most exciting result concerning these is Kaplansky's 
representation theorem which characterizes these, up to isomorphism (of the 
entire structure), as the formal power series fields given by Tv and Kv, with an 
appropriate factor system, with their natural order and valuation. 

Yet another area with useful applications to ordered fields, as well as 
ordered groups, is topological algebra. Here, the connection arises from the 
fact that, in an ordered field K, say, the open intervals ] — e, e[, 0 < e in K, 
form a neighbourhood basis of 0 for a ring topology (and analogously for 
ordered abelian groups). The completion K of K with respect to this turns out 
to be a field again, as one might naively have hoped for, remembering that 
Q = R. Again, with the latter in mind, it may not be surprising (although 
perhaps it should) that K as an ordered set can be identified with a certain part 
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of the Dedekind completion 8K of K as an ordered set: c e §K belongs to K iff 
for any 0 < e in K there exist a < c and b > c in K such that b - a < e. 
Needless to say, this permits an alternative construction of K in terms of 
special Dedekind cuts of K (Baer 1970, Massaza 1969/70). Natural questions 
now offer themselves in abundance: What properties of K determine desired 
properties of Kl How do completion K ~> K and real closure K ~> AT interact? 
How are K and L related when K is an ordered subfield of L? What can be 
said about the order compatible valuations of K versus those oï K1 And 
indeed, there is an extensive theory, the work of many authors, which provides 
interesting answers to questions of this type. In a similar vein one has 
questions of this sort for ordered abelian groups. Needless to say, the corre­
sponding theory is not as rich as that for ordered fields, but it still has some 
interesting results. 

A vast generalization of the notion of a field is that of a ternary ring, which 
is an algebraic system with a single ternary and two nullary operations subject 
to five axioms. Ternary rings arise as the coordinate rings of projective planes, 
where the latter can be described either as a 2-sorted structure (points, lines) 
with an appropriate relation between the two sorts (incidence), or as a set (of 
points) together with a collection of distinguished subsets (the lines) subject to 
the condition that any two distinct points belong to exactly one line, any two 
distinct lines have exactly one point in common, and there exist at least four 
points no three of which are collinear. Any field determines a ternary ring by 
defining the ternary operation as T(a, x, b) = ax + b, with 0 and 1 as the 
nullary ones, and the original field operations can, of course, be recovered 
from T. In this sense, fields are special ternary rings. 

A projective plane is called ordered (Coxeter 1949) if each Une has at least 
four points, and on each line a quaternary separation relation is given such that 
these relations are invariant under all perspectivities. Here, the defining 
properties of a separation relation express the way in which two of four 
different points on a circle separate the other two, and perspectivities are 
special maps derived from the basic structure of the plane. Any ordering of a 
projective plane (£ induces a total order in the usual sense on any coordinatiz-
ing ternary ring K, making K into an ordered ternary ring in the sense that its 
operation T satisfies a number of laws of monotony (e.g. if b < c then 
T(a, x9 b) < T(a, x, c)). Conversely, if K is an ordered ternary ring then its 
order determines a separation relation on each line of (£, making (£ into an 
ordered projective plane, and the two correspondences are inverse to each 
other (Crampe 1958). This is a deep result and requires quite a complicated 
proof. The argument proceeds by considering, as one does for the coordinatiza-
tion, the affine plane ©;, obtained by removing a line / from @, and the 
intervening notion of an ordered affine plane. Crucial in this context is the 
result (Crampe 1958) that the orderings of @ and (£, uniquely correspond to 
each other. 

With this basic setting one can ask which geometric properties of an ordered 
projective plane (£ correspond to which properties of its ordered ternary 
coordinate rings K. Typical results: K is an ordered division ring (field) iff the 
Theorem of Desargue (Pappus) holds in (£. 
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Besides ordered projective planes one has topological projective planes, mean­
ing that each, the set of points and the set of lines, is equipped with a topology 
such that intersecting distinct lines and spanning a Hne by distinct points are 
continuous operations, and there is a nontrivial open set of points. The study 
of topological projective planes, some 30 years old, has produced a consider­
able number of interesting results but has also left some very natural open 
questions. Among the former are that the point space of a topological plane is 
regular Hausdorff, either connected or with trivial quasicomponents, second 
countable and a-compact whenever it is locally compact, and compact whenever 
each line is compact. Further results deal with connectivity properties, espe­
cially with the question when the affine Unes are homeomorphic to R. 
Regarding the relation between a projective plane (£ and any of its ternary 
rings K, one has the rather obvious observation that if © is topological then K 
is topological in the sense that its topology makes the fundamental ternary 
operation and certain further derived operations continuous. Interestingly, it is 
an open question, with only partial answers to date, whether every topological 
ternary ring actually arises this way. 

Topological and ordered projective planes interact by the fact that any 
ordering of a projective plane (£ determines topologies on points and Unes 
making (£ into a topological projective plane such that, on each line of @, the 
induced topology is the interval topology. A topological projective plane @ is 
then called orderable iff (£ has an ordering such that the topology derived from 
the latter is the given topology of (£. This notion is illuminated by the 
remarkable result (Einert 1975) that a connected projective plane is orderable 
iff all its affine lines are homeomorphic to R. 

The concept of archimedean ordered field has its natural extension to 
ordered ternary rings, leading then to the notion of archimedean ordered 
projective plane. The fundamental result concerning these, highly sophisticated 
counterpart to the original result of Holder's for archimedean ordered groups, 
is that they are exactly the ordered projective subplanes of projective planes 
whose affine Unes are homeomorphic to R (PrieB-Crampe 1967). The proof 
follows the same idea as the classical construction of R from Q by means of 
Dedekind cuts, providing a (conditional) order completion for any archi­
medean ordered ternary ring, but is so vastly more involved that one can only 
wonder why. 

All these topics, and a few others omitted in this survey, are treated in the 
book under review, the motivation for which the author attributes to a 
suggestion by Reinhold Baer some 10 years ago. No doubt this suggestion was 
a very fortuitous one, and the author has written a text of remarkable scope, 
wide erudition, and exemplary thoroughness, producing an admirable execu­
tion of the project conceived by the late master. As a comment, though by no 
means criticism, it might be observed that, at first sight, there appears to be 
some dichotomy between the parts that deal with groups and fields and those 
devoted to projective planes. The concerns regarding the former do lead, at 
times, in directions somewhat different from those regarding the latter. Still, 
bringing together this variety of different strands of ideas in the way presented 
here does make good sense, and the author has succeeded in providing a 
compelling picture of unity in diversity. Moreover, it is not unreasonable to 
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expect that some thoughtful readers might find the picture, so carefully laid 
out, fertile ground for new ideas leading to interesting new work. What better 
can be said of a book of this kind? 

P.S. There may be the odd misprint here or there, but there is one rather 
prominent one the reviewer feels duty bound to report: the title on the spine of 
the book reads "Angewandte Strukturen" = applied structures, which of course 
should be "Angeordnete Strukturen" = ordered structures. It is true that 
augmenting abstract algebra by order, or topology, is usually felt to make it 
less abstract, but "applied" may be going a bit too far 
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