INTEGRAL REPRESENTAIONS ON HERMITIAN MANIFOLDS: THE $\overline{\partial}$ -NEUMANN SOLUTION OF THE CAUCHY-RIEMANN EQUATIONS¹

BY INGO LIEB² AND R. MICHAEL RANGE

1. Introduction. Let D be a relatively compact domain in a Hermitian manifold X of complex dimension n. The Cauchy-Riemann operator $\overline{\partial}$ extends to a densely defined operator

$$\overline{\partial} \colon L^2_{0,q}(D) \to L^2_{0,q+1}(D), \qquad 0 \le q \le n.$$

The inner product in $L^2_{0,q}(D)$ is given by

$$(f,g)_D = \int_D f \wedge *\overline{g},$$

where * is the Hodge operator defined by the Hermitian structure. If $\overline{\partial}^*$ is the Hilbert space adjoint of $\overline{\partial}$, one defines the complex Laplacian by

$$\Box = \overline{\partial} \, \overline{\partial}^* + \overline{\partial}^* \overline{\partial}.$$

Its significance for complex analysis lies in the fact that if $Nf \in \text{dom} \square$ solves $\square(Nf) = f$ and $\overline{\partial}f = 0$, then $u = \overline{\partial}^* Nf$ is the unique solution of $\overline{\partial}u = f$ which is orthogonal to ker $\overline{\partial}$. J. J. Kohn has established existence and regularity properties of the solution operator N, giving the solution of minimal norm—the so called $\overline{\partial}$ -Neumann operator—in case D is strictly pseudoconvex [5], and in more general cases as well [6]. The proofs are based on a priori estimates in L^2 -Sobolev spaces, and therefore they do not give any explicit information about the kernels of N or $\overline{\partial}^*N$.

In recent years there has been much interest in finding more explicit and concrete representations of the abstractly defined operators N and $\overline{\partial}^* N$ (see [2, 3, 9, 10, 12]). In [7] we began to study $\overline{\partial}^* N$ by using the calculus of Cauchy-Fantappié kernels in \mathbb{C}^n , in analogy to the work of Kerzman and Stein [4] and Ligocka [8] for the Szegö, respectively, Bergman kernel; in contrast to the scalar case, the incompatibility of the Euclidean metric with the complex geometry of the boundary of D turned out to be a major obstruction in the general case.

In the present paper we overcome this obstruction by generalizing the results in [7] to arbitrary Hermitian manifolds; this enables us to then introduce a special Levi metric—similar to the one in [2]—and to establish the required symmetry properties of the kernels. Our main result gives a new and completely explicit integral representation of the principal part of $\overline{\partial}^* N$ on

©1984 American Mathematical Society 0273-0979/84 \$1.00 + \$.25 per page

Received by the editors May 17, 1983 and, in revised form, June 13, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 32A25, 32F20, 35N15; Secondary 53C55. ¹Research partially supported by NSF grant MCS 81-02216.

²Partially supported by SFB "Theoretische Mathematik" of the Deutsche Forschungs-

gemeinschaft.

range $\overline{\partial}$. It is likely that these methods will lead to a corresponding representation of N itself (see [11] for the case of the unit ball in \mathbb{C}^n).

2. Kernels on Hermitian manifolds. Given a Hermitian manifold (X, ds^2) of dimension n > 1, we fix a function ρ on $X \times X$ which agrees with the geodesic distance function in a neighborhood U of the diagonal Λ , and which is positive and C^{∞} on $X \times X - \Lambda$. Generic error terms will be denoted by $\mathcal{E}_j, j \in Z$, meaning that \mathcal{E}_j is a double form which is smooth off the diagonal on a region in $X \times X$, and which satisfies $|\mathcal{E}_j| \leq \rho^j$ locally near the diagonal; integral operators with kernels \mathcal{E}_j will also be denoted by \mathcal{E}_j .

Define the double form Γ_q on $X \times X - \Lambda$ by

$$\Gamma_q=rac{(n-2)!(-1)^q}{q!2^{1+q}\pi^n}rac{(\partial_x\partial_y
ho^2)^q}{
ho^{2n-2}},\qquad 0\leq q\leq n.$$

Since $\Box = \frac{1}{2}\Delta + \text{terms of order} \leq 1$, standard results in Riemannian geometry (see de Rham [1]) and integration by parts imply the following representation formula (see [7] for the case $X = \mathbb{C}^n$).

LEMMA 1. If $D \in X$ has C^1 boundary and $f \in C^1_{0,q}(\overline{D})$ satisfies the first $\overline{\partial}$ -Neumann boundary condition, then

$$f(y) = -\int_{\mathbf{b}D} f \wedge *\partial_x \overline{\Gamma}_q + (\overline{\partial}f, \overline{\partial}_x \Gamma_q)_D + (\overline{\partial}^* f, \vartheta_x \Gamma_q)_D + (f, \mathcal{E}_{1-2n})_D$$

for $y \in D$.

For a double form W on a subset of $X \times X$, of type (1,0) in x and type (0,0) in y, one defines the generalized Cauchy-Fantappié kernels $\Omega_q(W)$ by

$$\Omega_q(W) = \frac{(-1)^{q(q-1)/2}}{(2\pi i)^n} \binom{n-1}{q} W \wedge (\overline{\partial}_x W)^{n-q-1} \wedge (\overline{\partial}_y W)^q.$$

It follows that

$$-*\partial_x\overline{\Gamma}_q=\Omega_q(\partial_x
ho^2/
ho^2)+\mathcal{E}_{2-2n}.$$

Now suppose that $D \in X$ is strictly pseudoconvex with C^{∞} boundary. Fix a defining function $r \in C^{\infty}(X)$ for D which is strictly plurisubharmonic in a neighborhood of bD. By suitably patching functions defined in local coordinates as in the case $D \subset \mathbf{C}^n$ (see [4 or 7]), one constructs a smooth function ϕ on $\overline{D} \times \overline{D}$ with $\phi(x, x) = 0$ for $x \in bD$, $\phi(x, y) \neq 0$ if $x \notin bD$ or $y \neq x$, $\phi(x, y)$ holomorphic in y for x near bD and $\rho(x, y) < \varepsilon$, and $\phi(x, y) = -\overline{\phi(y, x)} = \mathcal{E}_3$. If $W = \partial_x \phi/\phi$ and $B = \partial_x \rho^2 [\rho^2 + 2r(x)r(y)]^{-1}$, let $A_x = A_x(W, B)$

$$=\frac{1}{(2\pi i)^n}\sum_{\mu=0}^{n-q-2}a_{\mu,q}W\wedge B\wedge (\overline{\partial}_xW)^{\mu}\wedge (\overline{\partial}_xB)^{n-q-\mu-2}\wedge (\overline{\partial}_yB)^q$$

for $0 \leq q \leq n-2$, and 0 otherwise, with suitably chosen rational constants $a_{\mu,q}$. Set $L_q = (-1)^{q+1} * \overline{A}_q$ and define $T_q \colon L^2_{0,q+1}(D) \to L^2_{0,q}(D), 0 \leq q < n$, by

$$\begin{split} T_0 g &= (g, \vartheta_x L_0 - * \overline{\Omega_0(W)} + \overline{\partial}_x \Gamma_0)_D, \\ T_q g &= (g, \vartheta_x L_q - \partial_y L_{q-1} + \overline{\partial}_x \Gamma_q)_D \quad \text{for } q \geq 1. \end{split}$$

An analysis of the kernels as in the case $X = \mathbb{C}^n$ shows that T_q is "smoothing of order 1/2", that is, T_q is bounded from L^{∞} into $\Lambda_{1/2}$.

3. Main results. The Hermitian metric ds^2 on X is said to be a Levi metric for D (or rather r) if ds^2 is conformally equivalent to

$$\sum \left(rac{\partial^2 r}{\partial z_j \, \partial \overline{z}_k}
ight) \, dz_j \otimes d\overline{z}_k$$

in a neighborhood of bD.

THEOREM 1. Let ds^2 be a Levi metric for D, normalized so that $\|\partial r\|_{ds^2} = 1$ near bD. Then T_q is the principal part of $\overline{\partial}^* N$ on the range of $\overline{\partial} \colon L^2_{0,q}(D) \to L^2_{0,q+1}(D)$.

REMARK. If D is the unit ball in \mathbb{C}^n with the Euclidean metric, $\sqrt{2}r = 1 - |x|^2$, and $\phi = 1 - \langle y, x \rangle$, then $T_q \equiv \overline{\partial}^* N$ on the whole space $L^2_{0,q+1}$ (see [11]). It appears likely that the restriction to range $\overline{\partial}$ in Theorem 1 is unnecessary.

Theorem 1 is a consequence of the following fundamental integral representation formula on strictly pseudoconvex domains, valid for arbitrary metrics, and Theorem 3. We denote by \mathfrak{A}_j a generic integral operator whose kernel is admissible of weighted order $\geq j$ (as defined in [7]).

THEOREM 2. A form $f \in C^1_{0,q}(\overline{D}) \cap \operatorname{dom} \overline{\partial}^*$ has the representation

$$f = T_q \overline{\partial} f + T_{q-1}^* \overline{\partial}^* f + E_q f + \mathcal{E}_{1-2n} f + \mathcal{E}_{2-2n} (\overline{\partial} f, \overline{\partial}^* f) + \mathfrak{A}_1 f + \mathfrak{A}_2 (\overline{\partial} f, \overline{\partial}^* f),$$

where

$$E_0 f = (f, *\partial_x \overline{\Omega_0(W)})_D$$

and

$$E_q f = (f, \vartheta_x \partial_y L_{q-1} - (\vartheta_x \partial_y L_{q-1})^*)_D \quad for \ q \ge 1.$$

THEOREM 3. If ds^2 is a Levi metric, normalized as in Theorem 1, then E_q is admissible of weighted order ≥ 1 for all $q \geq 1$.

The proof of Theorem 2 involves Lemma 1 and a generalization of the calculus of Cauchy-Fantappié forms in \mathbb{C}^n to Hermitian manifolds. Theorem 3 is based on a delicate analysis of the leading terms of $\vartheta_x \partial_y L_{q-1}$; since these are of weighted order ≥ 0 , but not ≥ 1 in general, the main point is a cancellation of singularities due to certain symmetries of the kernels. The result holds for arbitrary metrics in case q = n - 1, but if $1 \leq q < n - 1$, the Levi metric condition is essential.

We conclude by stating one of the many applications of these results.

THEOREM 4. Let ds^2 be a Levi metric for D. For $q \ge 1$ and $f \in L^2_{0,q} \cap \operatorname{dom} \overline{\partial} \cap \operatorname{dom} \overline{\partial}^*$, one has

(i)

$$\|f\|_{\Lambda_{1/2}} \lesssim \|f\|_{L^2} + \|\overline{\partial}f\|_{L^{\infty}} + \|\overline{\partial}^*f\|_{L^{\infty}};$$

and

(ii)

$$\|\overline{\partial}^* N f\|_{\Lambda_{1/2}} \lesssim \|f\|_{L^{\infty}}, \quad \text{if } f \text{ is } \overline{\partial}\text{-exact.}$$

Theorem 4(i) is the analogue in Hölder norms of Kohn's basic estimate. The corresponding version for q = 0 is

 (i_0)

$$\|f - P_0 f\|_{\Lambda_{1/2}} \lesssim \|\overline{\partial} f\|_{L^{\infty}},$$

where $P_0: L^2_{0,0} \to L^2_{0,0} \cap \mathcal{O}$ is the orthogonal projection. Estimate (i₀) holds for arbitrary metrics; it follows from Theorem 2 and symmetry properties of E_0 (cf. [7]); it was first proved in [2] by different methods for Levi metrics, and in [8] by the above methods for $X = \mathbb{C}^n$ with the Euclidean metric. Different proofs of Theorem 4 have been announced in [9 and 10], but, to our knowledge, detailed proofs have not been published.

References

1. G. de Rham, Variétés différentiables, Hermann, Paris, 1960.

2. P. Greiner and E. M. Stein, *Estimates for the* $\overline{\partial}$ -Neumann problem, Princeton Univ. Press, Princeton, N.J., 1977.

3. R. Harvey and J. Polking, The $\overline{\partial}$ -Neumann solution to the inhomogeneous Cauchy-Riemann equation in the ball in \mathbb{C}^n , Trans. Amer. Math. Soc. **281** (1984), 587–613.

4. N. Kerzman and E. M. Stein, The Szegö kernel in terms of Cauchy-Fantappié kernels, Duke Math. J. 45 (1978), 197-224.

5. J. J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds. I, II, Ann. of Math. (2) **78** (1963), 112–148; ibid. **79** (1964), 450–472.

6. ____, Subellipticity of the $\overline{\partial}$ -Neumann problem on pseudoconvex domains: sufficient conditions, Acta Math. **142** (1979), 79–122.

7. I. Lieb and R. M. Range, On integral representations and a priori Lipschitz estimates for the canonical solution of $\overline{\partial}$, Math. Ann. **265** (1983), 221–251.

8. E. Ligocka, The Hölder continuity of the Bergman projection and proper holomorphic mappings, 1983 (preprint).

N. Øvrelid, Pseudodifferential operators and the ∂-equation, Lecture Notes in Math., vol. 512, Springer-Verlag, 1976, pp. 185–192.

10. D. H. Phong, On integral representations for the Neumann operator, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), 1554–1558.

11. R. M. Range, The $\overline{\partial}$ -Neumann operator on the unit ball in \mathbb{C}^n , Math. Ann. **266** (1984), 449-456.

12. N. K. Stanton, The solution of the $\overline{\partial}$ -Neumann problem in a strictly pseudoconvex Siegel domain, Invent. Math. **65** (1981), 137–174.

MATHEMATISCHES INSTITUT, UNIVERSITÄT BONN, 5300 BONN 1, WEST GER-MANY

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT AL-BANY, ALBANY, NEW YORK 12222