RESEARCH ANNOUNCEMENTS

TOEPLITZ OPERATORS AND SOLVABLE C^{*}-ALGEBRAS ON HERMITIAN SYMMETRIC SPACES

BY HARALD UPMEIER

Bounded symmetric domains (Cartan domains and exceptional domains) are higher-dimensional generalizations of the open unit disc. In this note we give a structure theory for the C^{*}-algebra τ generated by all Toeplitz operators $T_{f}(h):=P(f h)$ with continuous symbol function $f \in C(S)$ on the Shilov boundary S of a bounded symmetric domain D of arbitrary rank r. Here h belongs to the Hardy space $H^{2}(S)$, and $P: L^{2}(S) \rightarrow H^{2}(S)$ is the Szegö projection. For domains of rank 1 and tube domains of rank 2, the structure of τ has been determined in $[\mathbf{1}, \mathbf{2}]$. In these cases Toeplitz operators are closely related to pseudodifferential operators. For the open unit disc, τ is the C^{*}-algebra generated by the unilateral shift.

The structure theory for the general case [12] is based on the fact that D can be realized as the open unit ball of a unique Jordan triple system $Z[\mathbf{7}$, Theorem 4.1]. Denoting the Jordan triple product by $\left\{u v^{*} w\right\}$, a tripotent $e \in$ Z satisfies $\left\{e e^{*} e\right\}=e$. Tripotents generalize the partial isometries of matrix algebras and determine the boundary structure of $D \subset Z$ (cf. [7, Theorem $6.3]$). Our principal result ($[12]$; cf. also $[3,4,8]$) is the following:

Theorem 1. The Toeplitz C^{*}-algebra τ associated with a bounded symmetric domain $D \subset Z$ of rank r is solvable of length r, i.e. there exists a chain

$$
\{0\}=I_{0} \subset I_{1} \subset I_{2} \subset \cdots \subset I_{r} \subset I_{r+1}=\tau
$$

of closed two-sided ideals I_{k} such that for $0 \leq k \leq r$ there is a C^{*}-algebra isomorphism (" k-symbol")

$$
\sigma_{k}: I_{k+1} / I_{k} \rightarrow C\left(S_{k}\right) \otimes \mathcal{K}\left(H_{k}\right)
$$

where S_{k} denotes the compact manifold of all tripotents $e \in Z$ of rank k and $\mathcal{K}\left(H_{k}\right)$ denotes the C^{*}-algebra of all compact operators on a Hilbert space H_{k}. Further, $\operatorname{dim}\left(H_{k}\right)=\infty$ for $k<r$ and $\operatorname{dim}\left(H_{r}\right)=1$.

[^0] $0273-0979 / 84 \$ 1.00+\$.25$ per page

Corollary. The spectrum of τ can be identified with the set of all tripotents of Z. The ideal I_{r} is the closed commutator ideal of τ and $\tau / I_{r} \approx \mathcal{C}(S)$, where $S=S_{r}$ is the Shilov boundary. Further, $I_{1}=\mathcal{K}\left(H^{2}(S)\right)$.

The proof of Theorem 1 is based on a detailed study of the harmonic analysis in $H^{2}(S)[\mathbf{1 0}]$ and of the fine structure of single Toeplitz operators [11]. Since the Toeplitz C^{*}-algebra τ associated with a reducible bounded symmetric domain D can be realized as a tensor product, we may assume that D is irreducible. Let $\mathcal{P}(Z)$ denote the polynomial algebra on Z and let K be the largest connected group of biholomorphic automorphisms of D fixing the origin.

The next result [10], based on ideas from [6], applies to domains equivalent to a tube domain (generalized upper half-plane). In this case the Jordan triple system Z is actually a unital Jordan algebra.

Theorem 2. Suppose the domain D is of tube type. Then

$$
\mathcal{P}(Z) \approx \mathbf{C}[N] \otimes H(Z),
$$

where N denotes the norm function ("generalized determinant") of the Jordan algebra Z and $\mathcal{H}(Z)$ is the space of all harmonic polynomials (for the commutator subgroup of K).

In order to apply Theorem 2 to a general domain $D \subset Z$, consider for $1 \leq k \leq r$ the Jordan algebra $Z_{k}:=\left\{z \in Z:\left\{e e^{*} z\right\}=z\right\}$ of rank k with unit element $e:=e_{r+1-k}+\cdots+e_{r}$, where $\left\{e_{1}, \ldots, e_{r}\right\}$ denotes a frame of orthogonal minimal tripotents of the Jordan triple system $Z[\mathbf{7}, \S 5]$. Denote by N_{k} the norm function of Z_{k}, viewed as a polynomial on Z. The Peter-Weyl decomposition of $H^{2}(S)$, determined in [9] and described case by case in [5], can now be realized as follows [10]:

Theorem 3. The irreducible K-module $E_{m} \subset \mathcal{P}(Z)$ with signature $m_{1} \geq$ $m_{2} \geq \cdots \geq m_{r} \geq 0$ is generated by the conical polynomial $N_{m}=N_{1}^{l_{1}} N_{2}^{l_{2}}$ $\cdots N_{r}^{l_{r}}$, where $m_{k}=l_{k}+\cdots+l_{r}$ for all k.

The K-invariant scalar product $(u \mid v)$ on Z given by the generic trace $[\mathbf{7}$, 4.15] induces a differential scalar product $(p \mid q)_{Z}$ for polynomials $p, q \in \mathcal{P}(Z)$ [6, III.1]. Let $(\mid)_{S}$ be the integral scalar product in $H^{2}(S)$. Using integral formulas for semisimple Lie groups, the relationship between these K-invariant scalar products can be computed explicitly $[\mathbf{1 1}]$. Let (r, s, t) denote the type of D, defined via the Peirce decomposition of $Z[\mathbf{7}$, Theorem 3.14].

THEOREM 4. For every signature $m=\left(m_{1}, \ldots, m_{r}\right)$ and all $p, q \in E_{m}$, we have

$$
\frac{(p \mid q)_{Z}}{(p \mid q)_{S}}=\prod_{j=1}^{r} \frac{\left(m_{j}+\frac{1}{2} s(r-j)+t\right)!}{\left(\frac{1}{2} s(r-j)+t\right)!}
$$

As a consequence of Theorem 4, the fine structure of "polynomial" Toeplitz operators (generating τ) can be related to polynomial differential operators $h(z)(\partial / \partial z)$, where z denotes the "coordinate" of Z (cf. [11]):

THEOREM 5. Suppose $l(z)=(z \mid v)$ is a linear form. Then

$$
\begin{aligned}
T_{l}^{*}(p) & =\sum_{j=1}^{r}\left(m_{j}+\frac{s}{2}(r-j)+t\right)^{-1}\left(\left(v \frac{\partial}{\partial z}\right) p\right)_{m-\varepsilon_{j}} \\
T_{l}(p) & =\sum_{j=1}^{r}\left(m_{j}-\frac{s}{2}(j-1)\right)^{-1}\left(\left(\left\{z v^{*} z\right\} \frac{\partial}{\partial z}\right) p\right)_{m+\varepsilon_{j}}
\end{aligned}
$$

for all $p \in E_{m}$, the subscript denoting the Peter-Weyl component for signature

$$
m \pm \varepsilon_{j}=\left(m_{1}, \ldots, m_{\jmath-1}, m_{j} \pm 1, m_{j+1}, \ldots, m_{r}\right)
$$

COROLLARY. The commutator $\left[T_{l}, T_{l}^{*}\right]$ is a "diagonal' operator respecting the Peter-Weyl decomposition of $H^{2}(S)$.

Theorem 5 enables us to construct the irreducible representations of the Toeplitz C^{*}-algebra $\tau[\mathbf{1 1}]$. For a tripotent $e \in Z$, the Jordan triple system $Z_{e}:=\left\{w \in Z:\left\{e e^{*} w\right\}=0\right\}$ contains the bounded symmetric domain $D \cap Z_{e}$ with Shilov boundary S_{e}. For $f \in \mathcal{C}(S)$ define $f_{e} \in \mathcal{C}\left(S_{e}\right)$ by $f_{e}(w):=f(e+w)$. Consider the "peaking functions"

$$
h_{e}^{i}(z):=c_{i}(\exp (z \mid e))^{2}
$$

for $i \geq 0$, where $c_{i}>0$ is a constant such that $\left\|h_{e}^{i}\right\|=1$.
THEOREM 6. For each tripotent $e \in Z$ there exists an irreducible representation σ_{e} ("e-symbol") of τ on the Hardy space $H^{2}\left(S_{e}\right)$, such that $\sigma_{e}\left(T_{f}\right)=$ $T_{f_{e}}$ for all $f \in \mathcal{C}(S)$ and

$$
\lim _{i \rightarrow \infty}\left\|A\left(h_{e}^{i} \cdot q\right)-h_{e}^{i} \sigma_{e}(A) q\right\|=0
$$

for all $q \in \mathcal{P}\left(Z_{e}\right)$ and all operators A in a dense $*$-subalgebra of τ.
For $0 \leq k \leq r$ let $I_{k} \subset \tau$ be the joint kernel of all e-symbol homomorphisms σ_{e} for tripotents $e \in S_{k}$ of rank k. Theorem 1 now follows from the fact that I_{1} consists of compact operators. More generally, the ideals I_{k} have an internal characterization [12]:

ThEOREM 7. For $0 \leq k \leq r$ let P_{k} denote the orthogonal projection from $H^{2}(S)$ onto the Hilbert sum of all K-modules E_{m} satisfying $m_{k+1}=\cdots=$ $m_{r}=0$. Then I_{k+1} is the C^{*}-algebra generated by all operators $T_{p} P_{k} T_{q}^{*}$ for $p, q \in \mathcal{P}(Z)$.

References

1. C. A. Berger, L. A. Coburn and A. Korányi, Opérateurs de Wiener-Hopf sur les sphères de Lie, C. R. Acad. Sci. Paris 290 (1980), 989-991.
2. L. A. Coburn, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973), 433-439.
3. A. Dynin, Inversion problem for singular integral operators: C^{*}-approach, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), 4668-4670.
4. _, Multivariable Wiener-Hopf and Toeplitz operators (preprint).
5. K. D. Johnson, On a ring of invariant polymomials on a hermitian symmetric space, J. Algebra 67 (1980), 72-81.
6. B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753-809.
7. O. Loos, Bounded symmetric domains and Jordan pairs, Univ. of California, Irvine, 1977.
8. P. S. Muhly and J. N. Renault, C^{*}-algebras of multivariable Wiener-Hopf operators, Trans. Amer. Math. Soc. 274 (1982), 1-44.
9. W. Schmid, Die Randwerte holomorpher Funktionen auf hermiteschen symmetrischen Räumen, Invent. Math. 9 (1969), 61-80.
10. H. Upmeier, Jordan algebras and harmonic analysis on symmetric spaces, Amer. J. Math. (to appear).
11. , Toeplitz operators on bounded symmetric domains, Trans. Amer. Math. Soc. 280 (1983), 221-237.
12. _, Toeplitz C^{*}-algebras on bounded symmetric domains, Ann. of Math. (to appear).

Department of Mathematics, University of Pennsylvania, PhiladelPhia, Pennsylvania 19104

Current address: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-7400 Tübingen, Federal Republic of Germany

[^0]: Received by the editors August 22, 1983.
 1980 Mathematics Subject Classification. Primary 47B35, 47C15; Secondary 32M15, 17C20.
 (c)1984 American Mathematical Society

