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COMPLEXIFICATION, TWISTOR THEORY, 
AND HARMONIC MAPS FROM RIEMANN SURFACES 

BY MICHAEL G. EASTWOOD1 

ABSTRACT. Penrose's twistor theory and many other ideas of mathematical 
physics are based on the notion of complexification. This notion is explained 
and examples of its apphcation in physics and mathematics are described. In 
particular, the well-known analogy between Yang-Mills fields and harmonic 
maps of Riemann surfaces becomes rather stronger after complexification. 
This strengthening is the main point of this paper. 

Introduction. Throughout Penrose's development of twistor theory [25, 28], 
complexification is omnipresent, albeit often only implicitly. This technique is 
probably more familiar to physicists than mathematicians, especially its infor­
mal use in quantum field theory. It is, however, a quite precise construction 
which can probably find greater apphcation in mathematics than it presently 
enjoys. The idea is that many structures based on real numbers become more 
understandable if viewed in a complex environment. Familiar examples are 
algebraic varieties and trigonometric or elliptic functions. In §1 a brief exposi­
tion of the complexification of real-analytic structures is given, together with a 
few examples. 

The main examples of this article, however, come from twistor theory and 
the theory of harmonic maps as discussed in §§2 and 3 respectively. As regards 
twistor theory, the Ward correspondence for self-dual Yang-Mills fields emerges 
as a direct analogue of the Cauchy-Riemann equations for Riemann surfaces. 
The harmonic maps of §3 will be from a Riemann surface into complex 
projective space. The construction of such mappings due to Din and Zakrzew-
ski [7, 8] and, independently, Burns [4] (see also Eells and Wood [11, 12]) 
becomes rather clearer after complexification. This clarification and the 
strengthening of the well-known analogy between Yang-Mills fields and 
harmonic maps are two of the aims of this article. Also, this gives an 
illustration of the utility of complexification. 

This utility is well known to those who know and in particular to Roger 
Penrose and Claude LeBrun (see [18-20]), to whom I am grateful for many 
useful conversations. I would also like to thank the Institut des Hautes Études 
Scientifiques for hospitality during the work described in this paper. 

1. Complexification. Suppose M is a real-analytic manifold. Each coordinate 
patch £/c Un can be enlarged to a neighbourhood C [ / c C . Since the 
coordinate changes are real analytic functions, they may be extended to these 
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enlarged neighbourhoods (assumed sufficiently small for the relevant power 
series still to converge) and, as shown by Bruhat and Whitney [2], if care is 
taken to ensure the Hausdorff condition then the result is a complexification of 
M. More precisely, this process creates a complex manifold CM equipped with 
a conjugate holomorphic mapping : CM-»CM called complex conjugation, 
whose fixed point set is M. As a germ around M, CM is unique and can be 
called the complexification. Infinitesimal constructions on M complexify as 
tensoring with C so that, for example, TCM\M = CTM, where T means 
tangent bundle and CTM = C ®R TM. Real-analytic structures on M extend 
uniquely to the complexification by first expressing them in terms of power 
series transition rules. For example, a real-analytic connection on a real-
analytic vector bundle will become a holomorphic connection on a holomor­
phic vector bundle on CM. The original structure can always be recovered by 
means of a complex conjugation or reality structure. Some examples of com­
plexification are as follows. 

Suppose M is a two-dimensional Riemannian manifold. Gauss considered 
the question of whether one could always find local coordinates x and y in 
which the metric took the form/(x, y)(dx2 + dy2) for some positive function 
ƒ. He was motivated by the question of whether one can make a map of a piece 
of countryside so that angles are preserved. The affirmative answer in the 
smooth case, due to Korn and Lichtenstein, is not simple (see Chern [5]), but 
Gauss proved only the real-analytic version, in which case complexification 
provides an elegant and geometric proof. To motivate this proof first consider 
the case in which M is Lorentzian, i.e. suppose M has a metric of signature 
( + , - ) and ask whether it locally takes the form/(x, y)(dx2 - dy2). In this 
case there are at each point of M two directions singled out by the metric, 
namely the null directions, where the corresponding tangent vectors have zero 
length. Locally one can make a consistent choice (indeed, globally, if M is 
orientable) to obtain two direction fields which integrate to give two transverse 
foliations by curves. Using these curves as local coordinates (w, v% the metric 
takes the form ƒ du du, and then set u = x + y9 v = x - y. To mimic this proof 
in the Riemannian case choose an orientation and define J e Aut(7"*M) to be 
rotation through TT/2 in the sense of the orientation. The problem is to find 
local coordinates so that J(dx)= —dy and J(dy) = dx. J is the Hodge 
* -operator. For the corresponding construction in the Lorentzian case, J2 = 1 
and the null covectors are the ± 1-eigenspaces. In the Riemannian case 
J2 = - 1 so / has no real eigenvectors. If, however, M and J are real-analytic 
then ƒ extends to some neighbourhood of M in its complexification CM where 
it now has genuine eigenvectors. J has eigenvalues ± i since this is the case on 
M. Just as in the Lorentzian case the eigenspaces induce foliations by curves, 
in this case holomorphic foliations by holomorphic curves. Hence there is a 
holomorphic coordinate z such that J(dz) = i dz. Restricting to M and writing 
z = x + iy gives J(dx) = -dy and J(dy) = dx as required. 

To summarize Gauss' theorem: an oriented real-analytic manifold M with 
conformai structure (a Riemannian metric defined only up to scale) is equiva­
lent to a Riemann surface. In retrospect it is possible to be more expücit about 
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CM, namely CM = M X M, where M denotes M but with the conjugate 
holomorphic structure. The real slice M is embedded as the (antiholomorphic) 
diagonal M 3 m >-> (m, m) e M X M, and the usual decomposition of the 
complexified tangent bundle of M according to type, CTM = Tl'°M © r01M, 
becomes exactly the splitting of the tangent bundle to CM as TCM = TM © 
TM. This geometric interpretation of Tp>qM gives a simple way of seeing that a 
vector bundle on M may be given a holomorphic structure by means of a 
B-operator. To be more precise, suppose E is a real analytic complex vector 
bundle on M and D: T(E) -> T(£ <8> r % ) satisfies D(Js) =fDs + s®df 
for s e r(2?) and ƒ a smooth function. Supposing also that Z> is real analytic, E 
and Z> extend to some neighbourhood of M in CM where one can interpret D 
as a connection in the M direction.JSince M is one dimensional, D is flat so E 
is canonically trivialized in the M direction and hence identified with a 
holomorphic vector bundle on M as required. 

Similar arguments apply to manifolds of higher dimension as follows. An 
almost complex manifold is a smooth manifold N together with an automor­
phism / : TN -> TN such that J2 = -1. If N is a complex manifold then one 
can take / to be multiplication by /. Conversely, under suitable integrability 
conditions, J defines a complex structure on N. Although the proof, in general, 
due to Newlander and Nirenberg [22] is difficult, the case of N and / 
real-analytic is clear after complexification (as noted by Eckmann and 
Fröhlicher [9]). Just as for surfaces consider the ± /-eigenspaces of / extended 
to CTN. On N this is the sphtting CTN = Th0N © T^N. The only difference 
in the general case is that these distributions may not be integrable in the sense 
of Frobenius. Thus / defines a complex structure when [T°^N, T°>lN] c T01iV. 
A consequence of the Newlander-Nirenberg theorem is that an integrable 
almost complex structure is real analytic, i.e. there is an analytic structure for 
N subordinate to the given smooth structure such that / is real-analytic. 
Malgrange has shown how to deduce this directly from the theory of nonlinear 
elliptic systems, so the above proof by complexification is valid for the smooth 
case (see Nirenberg [24]). Just_as for surfaces it is clear retrospectively that if N 
is complex then CN = N X N (the complex structure on JV being prescribed 
by - / ) . A holomorphic vector bundle on iV may be regarded as a holomor­
phic vector bundle onCN with a flat connection in the TV direction. This may 
be recovered from data on the real slice, namely a real-analytic complex vector 
bundle on N together with D: T(E) -> T(E <8> T°>lN) satisfying 

D(fs) = fDs + s ® 3ƒ and D2 = 0, 

where D: T(E ® T°^N) -> T(£ <8> T°>2N) is characterized by 

D(s $ o)) = Ds A w + s <8> 3w 

for s e T(E) and w G T(T°^N). 
The passage from smooth to real analytic is not always possible. For 

example, a smooth hypersurface in a complex manifold acquires the remnants 
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of a complex structure, namely a CR-structure (see, for example, [29]). If such a 
structure is given and is real-analytic then, conversely, it is easy to show by 
complexification that it is realizable as such a hypersurface. This conclusion is 
false even locally in the smooth category (e.g. [24, 29, 20]). 

In §3 the example of complexification as applied to a Kàhler manifold 
(specifically, complex projective space) will be needed. The extra structure 
present on such a complexification is as follows. The manifold itself complexi­
fies as CJV = N X N. Letting 0 1 0 (resp. 00,1) denote the holomorphic tangent 
bundle of N (resp. N), the tangent bundle to CN is 0 1 0 e 0 0 1 . The Hermitian 
metric on N is best regarded as a real Riemannian metric ( , ) compatible with 
the complex structure in that (JX, Y) + (X, JY) = 0. Therefore, upon com­
plexification, ( , ) becomes a holomorphic metric and compatibility becomes 
that 01 '0 and 00 '1 should be isotropic. The Kàhler condition on TV can be 
stated as v / = 0, where V is the Levi-Civita connection for ( , ). Upon 
complexification this is the condition that the holomorphic connection V 
preserve the splitting 01,0 © 00 '1, i.e. V is the direct sum of an affine 
connection on each of 0 1 0 and 0 0 1 . 

Other important examples of complexification are for compactified 
Minkowski space and the sphere S4 together with their conformai structures. 
These examples are the basis of twistor theory and are discussed in §2. 

Complexification as used in mathematics occurs, for example, in Grauert's 
[13] proof that a real-analytic manifold may be embedded in some RN as a 
closed real-analytic submanifold. The main step in this proof is in showing that 
the complexification can always be taken to be Stein. Complexification is also 
a first step in hyperfunction technology [30]. 

In physics, complexification is employed repeatedly in quantum field theory 
and especially in Hawking's [14] path-integral approach to quantum gravity. 
The idea is that if the time coordinate t is formally replaced by imaginary time 
/ X t9 then many previously ill-defined and divergent procedures become 
convergent and the answers can then be analytically continued back to real 
time. For example, the Schrödinger equation 

A* + V* = idV/dt 
becomes the heat equation with potential, 

A* + VV = 3*/3f, 
which is mathematically much easier to handle. In general relativity the 
procedure is somewhat more vague but the idea is to replace the Lorentzian 
metric by a Euclidean one, which is again mathematically more convenient. In 
this context it is interesting to note the recent theorem of DeTurck and Kazdan 
[6], which states that, parallel with Malgrange's theorem on the real analyticity 
of integrable almost complex structures, any smooth Riemannian solution of 
the Einstein vacuum equations admits a complexification. Other parallels 
between complex structures and Einstein manifolds are discussed by Koiso 
[17]. 

2. Twistor theory. Let F be a complex vector space and P(V) the corre­
sponding projective space. Denote by Q the nonsingular quadric in P(V) 
defined by ƒ (Z, Z) = 0 for ƒ e &V*. A hyperplane tangent to Q intersects in 
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a singular quadric, and decreeing that this quadric defines null directions at the 
point of tangency equips Q with a canonical holomorphic conformai structure. 
To be more precise, if ƒ is used to identify the normal bundle to Q with 0(2) 
and the Euler sequence 

0>*<P(V)(l)-»e 

is used to study the tangent bundle to P(V), then the tangent bundle to Q may 
be identified as 

TQ = {$ e 0(V)(\) s.t. ƒ(*, Z) = 0}/{$ = Z<j>). 

Hence, there is a symmetric form 

TQ&TQ -> 0(2) 

noting that this is independent of choice of $ and ¥. A local trivialization of 
0(2), i.e. a choice of conformai factor, gives a local holomorphic metric and 
hence a global conformai structure (though there is no global representative 
metric). It is easy to check that Q of dimension n is a conformai compactifica­
tion of C " with holomorphic metric dz\ + • • • + dz2. 

In the special case of n = 2, Q is just ^ X Pl5 where Px is the Riemann 
sphere. The conformai metric is null in the directions of the factors. As in §1 
the Riemann sphere may be embedded as the antiholomorphic diagonal. Thus, 
Q provides a complexification of S2 with its conformai structure. Another real 
slice of Q is the torus S1 X Sl for S1 the equator of Pv In this case the 
conformai metric on the slice is Lorentzian. 

The example relevant to twistor theory is n = 4, where Q provides a 
complexification of S4, the conformai compactification of Euchdean 4-space 
[1], or a complexification of the conformai compactification of Minkowski 
space [25]. The constructions of twistor theory (n = 4) often have analogies 
with similar constructions for n = 2. In particular, it is interesting to view the 
Ward correspondence [31] in this light as follows. 

Suppose more generally that M is a Riemann surface with complexification 
CAf = MXM. A holomorphic 1-form on CM splits according to type, 
<o = w1,0 + co0'1, where * to1,0 = /co1,0 and * co0,1 = -/co0,1. Consider the prob­
lem of finding a 1-form which is closed and self-dual, i.e. 

rfco = 0 and * co = /co. 
Locally one can always find a potential for co, i.e. a holomorphic function <J>, 
unique up to the gauge freedom ofan additive constant, such that d<j> = co. 
Then self-duality for co becomes d<j> = 0, the Cauchy-Riemann equations, 
which is geometrically the condition that <j> is constant in the M direction, i.e. is 
a holomorphic function on M. 

The analogous splitting for Q of dimension 4 is for 2-forms F = F++ F_, 
where *F+=F+ and * F_= -F_, * being the Hodge *-operator and 
depending only on the conformai structure (see [19] for more details on 
holomorphic conformai structures and * -operators). This decomposition corre­
sponds dually in the tangent bundle to two families of totally null 2-planes, 
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called by Penrose [25] a-planes and fi-planes, each family being parametrized 
by a Riemann sphere. A 2-form is self-dual ( * F = F) if and only if it vanishes 
on every /}-plane. For a general holomorphic conformai structure there is an 
integrability condition [26] (the vanishing of part of the Weyl curvature) which 
ensures that these infinitesimal /?-planes fit together to produce global /?-
surfaces. In this case the 3-dimensional parameter space is called the {dual) 
curved twistor space [26]. The quadric Q is conformally flat and so has a dual 
twistor space P* (and a twistor space parametrizing a-planes), although the 
identification of this space is rather easier in this case [25]. The self-dual 
sourceless Maxwell equations are 

dF = 0 and * F = F. 
These are a clear analogue of the Cauchy-Riemann equations for n = 2, and 
the point of the Ward correspondence [31] is that the geometric interpretation 
provided by complexification carries over to Maxwell's equations and, by the 
same arguments, to self-dual Yang-Mills equations. More precisely, there is 
locally always a potential $, i.e. a 1-form such that d$ = F, and this is unique 
up to gauge freedom 0 -> $ + dg for any function g. This is better interpreted 
as a line bundle with connection v , where $ is the connection 1-form and F is 
the curvature. To say that F is self-dual is to say that V is flat on /?-surfaces. 
Thus, the hne-bundle pushes down to a hne-bundle on P*. This is one 
direction of the Ward correspondence. 

For S4 there is the alternative approach of Atiyah [1] which uses the 
Newlander-Nirenberg theorem to produce the holomorphic bundle on twistor 
space. The argument via complexification, however, is rigorous since the 
ellipticity of the equations assures real-analyticity (cf. Wells [32]). 

Another example of complexification as used in twistor theory is Newman's 
espace [23] and the closely related hypersurface twistors of Penrose [25, 28]. 
In this context it is interesting to note that certain calculations in the smooth 
category can be avoided by means of complexification. To be more precise, 
Penrose observes that, associated to any space-like hypersurface in space-time, 
there is a CR-structure on the space of null geodesies meeting the hypersurface. 
Moreover, in the case of real-analytic space-time and hypersurface, it is 
possible to realize the space of null geodesies as a hypersurface in a 3-dimen­
sional complex manifold, whence the CR-structure. It follows that the natural 
geometric definition of the CR-structure given by Penrose for the smooth case 
is automatically integrable since this is a calculation [3, 20] whose outcome is 
clearly independent of the regularity of the data. Conversely, LeBrun [20] has 
used this example to exhibit CR-manifolds not realizable as embedded hyper-
surfaces. Other examples from twistor theory are due to Hill, Penrose, and 
Sparling [29]. These are based on the general principle, due to Sparling, that 
holomorphic results of twistor theory can always be replaced by corresponding 
CR-statements in the case of smooth data. 

3. Harmonic maps. If <j>: M -> N is a smooth mapping between oriented 
Riemannian manifolds then the energy of <j> is defined as 

r 1 
E(<t>) = ƒ •=• t raced A *d<f>, 
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where * : Q\4>*TN) -* Qm~l(<j>*TN) is the Hodge *-operator and the trace is 
taken with respect to the metric on N. Variation of <j> gives as Euler-Lagrange 
equations for this functional 

V(*d<t>) = Q, 

where V: Qm~\<j>*TN) -* Qm(<t>*TN) is the pull-back of the Levi-Civita 
connection on N. Such a critical mapping is called harmonic (see Eells and 
Lemaire [10] for a comprehensive review article). v(* d<j>) is the Hodge dual of 
the more usual tension. In local coordinates on N9 maintaining a more abstract 
notation on M, 

V(* d<f>) = d * d$ + Tjk d$j A * dip, 

where Yl
jk are the Christoffel symbols of N. 

There is a clear analogy with the Yang-Mills action and equations (an 
analogy familiar to many mathematicians and physicists (the latter being 
interested in harmonic maps under the name of "CP„-model", "a-model", or 
"current algebra")). For harmonic maps, d<t> is the analogue of the gauge field 
F (the curvature of a vector bundle connection V) and V(* d<j>) = 0 replaces 
V(* F) = 0. For gauge theories there is the Bianchi identity vF = 0. The 
corresponding identity holds in the harmonic case because V(d<J>) = V(<j>*ô) 
= <J>*v8, where 8 e Ù\TN) on N is the tautological section (Kronecker delta) 
and vS is exactly the torsion of V. For Yang-Mills, dimension 4 is special in 
that the equations are conformally invariant and, moreover, there are, by virtue 
of the Bianchi identity, special solutions comprising self-dual F, i.e. F = * F. 
As explained in §2, twistor theory, via complexification, gives a natural 
geometric way of describing such solutions. It is natural to ask whether there is 
a corresponding theory for harmonic maps (cf. the use of complex analysis by 
Weierstrass in his construction of minimal surfaces in U3 (see Hitchin [15])). 

The special dimension for harmonic maps is dim M = 2 for then the 
* -operator is conformally invariant and M need therefore only be a Riemann 
surface. If M were Lorentzian then *2 = 1, and one can investigate the 
geometric significance of the harmonic equations by breaking d<j> into self-dual 
and anti-self-dual parts. For Riemann M, however, *2 = - 1 and, just as in 
Gauss' proof of the existence of isothermal parameters, a similar geometric 
interpretation is only possible after complexification. To obtain special solu­
tions parallel to Yang-Mills, N must first be complex (or almost complex) so 
that * d§ = id<j> makes sense and, moreover, V should be complex linear, i.e. 
N should be Kàhler. In this case if <f> is holomorphic, i.e. * d<j> = id<j>, then 

V(*d<t>) = V(wty) = iv(d<j>) = 0, 

so <t> is harmonic. If d<t> is split into self-dual and anti-self dual parts, 

d<j> = d<j> + 9<f>, 

then <j) is harmonic if and only if V(3<J>) = 0, or, equivalently, V(3<|>) = 0. 
This complexifies as follows. A holomorphic mapping O: CM -> CN is said 

to be harmonic if and only if v(*d<J>) = 0. More generally, CN can be 
replaced by an arbitrary complex manifold with torsion-free holomorphic 
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connection, i.e. the reality structure does not enter into the definition of 
harmonic. Since v(d$) = 0, $ is harmonic <=> v(9$) = 0 <=> V(9$) = 0. 
There is possible confusion here because 9$ in this context is not the 
complexification of 9<j> for <f>: M -» N9 since, in particular, the complex 
structure on N has been ignored. In order to reconcile this_confusion in case N 
has a complex structure, write $ = ( ƒ, g): CM -> N X N = CN. Then $ is 
real, i.e. is the complexification of <J>: M -* JV, if and only if /(z, w) = g(w, z) 
and 9<J> then complexifies to 9/ or, equivalently, 9g, whereas 9<I> is the pair 
(9/, 9g). However, as observed in §3, the Kàhler condition on N is reflected on 
CN exactly as the condition that V preserve the splitting 0 = 01,0 e @0,1. 
Thus, <P is harmonic if and only if 

(V(9/) = 0 or v (9 / ) = 0) and (v(9g) = 0 or v(9g)). 

One of these four equivalent conditions is that V(9/) = 0 == V(9g), the 
complexification of V(9<f>) = 0. 

Note that complexification is justified in the case of mappings between 
real-analytic Riemannian manifolds since, by ellipticity of the field equations 
(see Eells and Lemaire [10]), a harmonic map is automatically real-analytic. In 
particular, this is a bona fide procedure for the case of harmonic mappings 
from a Riemann surface into complex projective space. 

Temporarily ignoring any real structure, a harmonic mapping to the com­
plexification (for M a Riemann surface) has a good geometric interpretation. 
Let Q,p,q denote the bundle of holomorphic forms on CM of degree p on M 
and q on M. Then 

V: Qlfi(Q*TCN) -> Q^(9*TCN) 

may be considered as a connection in the M-direction since it satisfies the 
Leibnitz rule V( fs) = ƒ X?s + 9/ <8> s. JBecause M is 1-dimensional, V is flat 
and so trivializes Qlfi(9mTCN) in the M-direction. Thus, Qlfi(^*TCN) pushes 
down to a bundle on M and the harmonic equation v(9$) = 0 now says that 
9$ e Ql0($*TCN) pushes down to a section of this bundle on M. In 
particular, this proves: 

PROPOSITION. Suppose M is a Riemann surface and $: CM-+CN is 
harmonic. Then the zero-set of 9$ consists of the fibres of ju: CM -> M over a 
discrete set of points {unless 94> = 0) and thus, by reseating, 9<I> defines a 
complex direction at$(x) even ifd$(x) = Q. D 

If N is Kàhler then a stronger version of this proposition is available. In this 
case write O = ( ƒ, g) and recall that $ harmonic implies, in particular, that 
V(9/) = 0. Thus, by exactly the same argument, 9/ can be rescaled (unless 
9/ =0) to define a complex direction in N. Similar conclusions apply to %f, 9g, 
and 9g. The following theorem follows by taking O to be real. 

THEOREM. Suppose <f>: M -> N is a harmonic map from a Riemann surface to a 
Kàhler manifold. Then 9<f> {resp. 9<J>) is either identically zero or has only isolated 
zeros of finite order and so defines a complex direction by reseating. D 
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Relative connections, i.e. defined along the fibres of some mapping (in this 
case ix: CM -> M), are familiar from twistor theory (e.g. Manin [21]). Indeed, 
in this lower dimension, M can be considered as its own (dual) "twistor 
space", i.e. M parametrizes the anti-self-dual curves in CM. 

Another aspect of this geometric interpretation of harmonic maps is their 
propagation from "null data" (cf. Penrose [27]): a harmonic map near x ^ CM 
is determined by its restriction to the null cone through x, and this restriction 
can be arbitrary. To be more precise, suppose (p,q) e M X M and ƒ and g are 
holomorphic functions with values in CN such that ƒ (p) = g(q). Then there is 
a unique harmonic $: U -» CN for some neighbourhood U of (/?, q) such that 
0(z, q) = f(z) and $(/?, w) = g(w). This is clear from V(3$) = 0 if one 
thinks of propagating Ô away from {z = p} using parallel transport from 
(w = q] to determine the derivative 3$ in the z-direction. If, for example, 
N = R so CN = C9 then this becomes the statement that, locally, every 
harmonic C-valued function on M is the sum of a holomorphic function and 
an antiholomorphic function. This special case is a low-dimensional version of 
the Kirchoff integral formula [25, 27] for the propagation of massless fields on 
space-time. 

The remainder of this article concerns the construction of harmonic maps 
from Riemann surfaces into complex projective space due to Burns [4], Din 
and Zakrzewski [7, 8], and Eells and Wood [11,12]. They also show that if the 
domain is the Riemann sphere then this construction constitutes a classifica­
tion. This additional analytic argument is not aided by complexification and 
will be omitted here. As far as the construction goes there are two ingredients. 
The first is an analytic one, namely the theorem proved earlier in this section. 
The second ingredient is just algebraic manipulation of the field equations 
specific to the range being complex projective space. This manipulation is not 
aided by complexification. 

Let ( , ) be an Hermitian form on a complex vector space V. Let H denote 
the Hopf bundle on P(V) and T the tangent bundle. Then there is the Euler 
sequence 

t >-> y® H -» T 
W ID 

f " fZ, 

where 1 is the trivial complex Une bundle and Z denotes the canonical section 
of V ® H given by the inclusion H* c V. The Hermitian form provides a 
splitting 

V® HB P*-+(P, Z)/\\zf e 1 

and hence an Hermitian metric, the Fubini-Study metric, on the tangent space 
as a subspace {(P, Z) = 0 } c V® H. The corresponding metric connection 
is given by 

VP = dP- [(dP, Z)Z + (dZ, Z)P]/\\Z\\\ 
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where the derivatives are taken nonprojectively, noting that the resulting form 
is appropriately homogeneous: if Z ^>XZ then P ^>XP and vP •-» XvP. 
Also note that ( v P , Z) = 0 as required. Now suppose <f>: M -> P(V) for 
some Riemann surface M. Using the same notation for <j>*T one can write 

9<j> = 3 # - (dR,R)R/\\R\\2, 

where R: M -> Fis any lifting of </>. Note that the right-hand side as a section 
of Tl>°M ® V <8> </>*# is independent of choice of R: if R -» A# then 

3<J> -> 3(X/{) - (8(XH)> XU)**/IMI| 2 

= XdR - X(dR, R)R/\\R\\2 +(dX)R -(dX)R 

= Xd<f>. 

Since the following calculations are local on M it is convenient to regard 3 and 
3 as coordinate dérivâtes rather than anything more invariant. In particular, 
they commute, rather than anticommute, and higher derivatives such as 32 

make good sense. These local statements and constructions, however, are easily 
seen to be really coordinate free (and hence extend to global constructions). By 
substituting the above expression for d<j> into the formula for v it follows that 
<j> is harmonic if and only if 

ddR - [(dR, R)dR + (dR, #)3fl] / | |# | |2 = ixR 

for some function /x. 
ForR.M -> F define 

DR = dR - (dR, R)R/\\R\\2 and DR = 3# - (M, R)R/\\R\\2, 

noting that D(XR) = XDR and D(XR) = XDR. If S: M -> F also, then write 
R ± S to mean (R,S) = 0. 

LEMMA. IfR ± S then (DR, S) + (R9 DS) = 0. 

PROOF. 

(dR - (dR, iR>^/||^||2, S} + /R, dS - (dS, S)S/\\S\\2\ 

= (dR, S) + (R,dS) = d(R, S) = 0. D 

It is easy to verify that if R is a lift of a harmonic <j> then 

DDR = otR and DDR = pR 

for some functions a and )8. Conversely, if these equations hold and, in 
addition, DR and DR are linearly independent or one of them vanishes, then it 
is not difficult to check that <j> is harmonic. In particular, this is the case if <£ is 
isotropic, i.e. 

DpR ±DqR for all/?, # > 1. 

Using the above lemma one can verify that this is equivalent to saying that 
span{R, dR, d2R,...} meets span{i£, BJR, d2R,...} orthogonally to span{R}. 
Indeed, isotropy implies that ..., D2R, DR, R, DR, D2R,... are all mutually 
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orthogonal. For example, DR ± R by construction so, from the lemma, 
(D2R, R) = - (DR, DR) = 0. 

THEOREM (BURNS, DIN, ZAKRZEWSKI, EELLS, WOOD). If <j> is harmonic and 
isotropic then so is Z><j>. 

PROOF. The statement of the theorem first needs some explanation. First 
represent <J> by a lift R: M -> V and compute DR. It may be that DR = 0, in 
which case d<j> = 0, i.e. <£ is antiholomorphic. If this is not the case then the 
previous theorem asserts that DR may be rescaled so as to map into V - {0}. 
The corresponding map into P(V) is called /></>. 

To check isotropy of D<j> means to check that 

. . . , D2(DR), D(DR), DR, D(DR), D2{DR),... 
are mutually orthogonal. Since <j> is harmonic, DDR = pR for some function /? 
so this becomes 

. . . , 0DR 9 pR, DR, D2R D3R,..., 
which are mutually orthogonal by isotropy of <f>. To check harmonicity, 

DD(DR) = D(/SR) = /3DR, 
which is one of the required equations. For the other equation, first note that, 
by commuting the first two derivatives and using the one just proved, it follows 
that 

DD(DR) e span(#, DR, D2R). 
Now use the lemma: 

(R, DD2R) = - (DR, D2R) = o 

and ~DD2R ± D2R by construction. D 
As a particular case of a harmonic isotropic <j> to use in this theorem, one can 

start with <J> holomorphic. Then D<j>, Z)2<f>, D3<j>,... will provide a family of 
nonholomorphic harmonic maps terminating in an antiholomorphic map. By 
isotropy this will happen in at most n steps for n the dimension of P(V). It will 
happen in less than n steps only if <f>(M) is contained in a lower-dimensional 
projective space. The operator D can be used to progress in the other direction 
along this family. 

In twistor theory there is a description of the full Yang-Mills equations 
(rather than just self-dual) due to Green, Isenberg and Yasskin [16], and 
Witten [33]. An analogy of this description for harmonic maps appears to be 
lacking. 
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