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THE ASYMPTOTIC BEHAVIOR 
OF NONLINEAR SCHRÖDINGER EQUATIONS 

BY YOSraO TSUTSUMI AND KENJI YAJEMA 

We consider the nonlinear Schrödinger equation with power interactions 

(NS) idu/dt = - i Au + Xlu^u 

in Rn , n > 2, with X > 0. Proposing a new method for studying the large time 
behavior of the solutions of (NS), we prove the following theorem. Ho = —\ A 
is the free Hamiltonian and 

(1) S = {u € L2(R"); IHIa + ||Vti||a + | M | 2 < oo}, 

where \\u\\q denotes the L9-norm of u. 

THEOREM. Let 1 + 2/n < p < 1 + 4/(n - 2). Then for any UQ e E 
there exists a unique u+ € L2(Rn) such that the solution u(t) of (NS) with 
u(0) = uo has the free asymptote u+ ast-+ +oo : 

(2) lim \\u(t)-exp(~itHo)u+\\2=0. 
t—•+(» 

REMARK. Since it is shown by Glassey [4] and Strauss [6] that if 1 < p < 
1 + 2/n any nontrivial solution u(t) of (NS) with u(0) G S never satisfies (2), 
our theorem achieves the least possible exponent 1 + 2/n for this direction. 

In the sequel we shall prove the theorem. Our proof is based on the follow­
ing observation: Since the asymptotic profile of the free evolution exp(—tóiïo) ƒ 
is given by (l/ii)n/2 exp(ix2 /2i)f(x/i) and (NS) is transformed by the con­
jugation C, 

(3) u(t, x) = (Cv)(t, x) = {l/it)n/2 exp(zz2/2t)t;(l/t,z/t), 

into the new equation 

(TNS) idv/dt = - i Av + Xltpfr-1)/*-2 M*-1*, 

the relation (2) is equivalent to the existence of 

(4) lim v(t) = v+(0) inL2(Rn) . 
t-+±o ~~ 

Here and hereafter ƒ and J are the Fourier transform of ƒ and the inverse 
Fourier transform of ƒ, respectively. The equation (TNS) has almost the same 
form as (NS) and, for p > 1 + 2/n, t 7 1^" 1) / 2" 2 is integrable near t = 0. Thus 
we expect the existence of the limit (4) for those p's. 

The equation (NS) has interested many authors and there is quite a body 
of literature. Among them, we mention the following which are related to 
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our result. For 1 < p < 1 + 4/(n — 2), the global existence of the solution u(i) 
of (NS) with u(0) e Hx(Rn) is proved by Ginibre and Velo [1], In [2] they 
also show the above theorem for 1 + 4/n < p < 1 + 4/(n — 2) (see also Lin 
and Strauss [5]). The lower exponent 1 4- 4/n is subsequently decreased to 
7(n) = (n + 2 + \Jn2 + 12n + 4)/2n in Strauss [7], but the allowed u(0) are 
restricted to be small in a certain norm. 

PROOF. Prom [1] and [2] we already know that (NS) has a unique global 
solution u(t, •) e C{RX; E) with u(0) = u <. We note that the solution of (NS) 
means the so-called mild solution of the integral equation associated with the 
differential equation (NS) (see [1]). Then a direct computation shows that 
v(t) = (C-^X*) e C(R±; E) is a unique solution of (TNS). 

We prove the theorem for t —• + oo with 1 + 2/n < p < 1 + 4/n only. The 
other cases may be proved similarly. We first obtain two conservation laws 
for (TNS). We multiply (TNS) by t^^-^^dv/dt and take the real part. 
This leads us to 

t2-n(P-i)/2 | | V w ( t ) | |a + 4 ƒ x ) | p + 1 dx 

(5) p + lJR" 

> «"-"û^/'HVtMIfê + -$-rf \v{s,x)\*+l dx 
p + 1 ^Rn 

for all 0 < s < t < -l-oo. We note that this rather formal calculation can be 
easily justified by the regularizing technique of Ginibre and Velo [1]. Next we 
multiply (TNS) by v and take the imaginary part to obtain 

(6) ||v(t)||a = |M«)||2, 0 < s < t < + oo. 

By (5) and (6) we conclude that 

(7) «'-"ö-^IIVtMH^d, \\v(t)\\p+1<C2, |Mt)||3<C3, 
for all t € (0,1], where Ci, C2 and C3 depend only on ||V(1)||HI and ||t>(l)||p+i. 
L e t ^ G f f 1 ^ ) . By (TNS), 

(8) =~j\vv{T\V<p)tT 

- i ƒ r^P- 1 ) / 2 -^!^)^- ' 1 ^) ,^) dr 

for 0 < t,s < 4-00, where (•,-) is the inner product in L2(Rn). Since 
n(p -1)/2 - 2 > - 1 for p > 1 + 2/n and H 1(Rn) is dense in L2(Rn), (7) and 
(8) show that the weak limit 

(9) w-limv(£) = v(0) 

exists in L2(Rn). Now choose <p = v(t) in (8). Then 

\(v(t) - v(s), v(t))\ <\f H Vt;(T)||a dr • || Vt#)||a 

(10) *J' 
+ y rn(P- l) /2-2|M r ) | |p+ i dT . | K t ) | | p + 1 , 
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for all 0 < s < t < +00. Applying (7) to (10), we have 

\(v(t)-v(s),v(t))\<C4 

(H) 

i f tn(p-l) /2- l _ sn(p-l)/4tn(p-l)/4-ly 
Ln(p-l) 

2 ^ n ( p - l ) / 2 - l _ s n(p~l) /2- l} 
n ( p - l ) - 2 

Let s —• +0 and use (9) to obtain 

(12) \(v(t) -1;(0), v(*))| < C B ^ P - 1 ) / 2 " 1 

with C5 > 0 depending only on n, p, ||t;(l)||p+i and ||v(l)||jfi. Therefore, 

ll*W - «(o)|g = Mt) - «(o), *(*)) - (v(t) - «(o), «(o» 
(13) < C B ^ - 1 ) / 2 " 1 + |(v(t) -1/(0), v(0))| 

- • 0 (i -+ +0). 

Returning to (NS) we see that 

(14) ||exp{-itHo)V{0) - u(t)\\2 -+0 (t-> +00), 

as desired. D 
The construction of wave operators and the asymptotic completeness prob­

lem will be discussed elsewhere. 
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