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The author of this book states his purpose clearly: "W[e] have tried to 
present to the non-specialist a view into the subject by means of its most 
striking theorems." He does not even hint at the vast range of the subject but 
merely covers a few things well. In a similar vein this review is directed not at 
the expert but at those who want to know why so many mathematicians study 
(and write books about) C*-algebras. The review will follow the book in 
requiring C*-algebras to be unital (i.e. to have multiplicative identity elements). 
It will also assume complex scalars except to discuss the real case. 

The story begins with two classes of concrete examples: one commutative 
and the other not. Let S be a compact Hausdorff space. Let C(S) be the space 
of all continuous complex valued functions on S. Under pointwise addition 
and multiplication C(S) is a commutative algebra. That is, it is a linear space 
which is also a commutative ring under the same additive structure and with 
the scalar and ring multiplications agreeing as one would expect. In addition 
C(S) has two other elements of structure which turn out to be crucial to its 
study. It has a norm (the supremum or uniform norm) defined by 

| | / | | - s u p { | / ( j ) | : 5 e S } Vf^C(S) 

under which it is a complete normed algebra or Banach algebra. It also has an 
involution *: C(S) -> C(S) defined by 

f*(s)=f(sy V / e C ( 5 ) , V j € S , 

where the bar denotes complex conjugation. We will say more about involu­
tions below, but for now we remark that an algebra with a (fixed) involution is 
called a *-algebra (pronounced star-algebra) and a Banach algebra with an 
involution is called a Banach * -algebra. 
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Now suppose S{ and S2 are both compact Hausdorff spaces and <t>: Sx -> S2 

is a continuous function. Then one may define C(<f>): C(S2) -> C(SX) by 

£ ( * ) ( ƒ ) : ƒ <><*>, / ^ C ( 5 2 ) . 

It is obvious that C(<J>): C(S2) -> C(SX) preserves the structure introduced 
above so that it is a *-homomorphism (i.e. a linear ring homomorphism 
satisfying C(<f>)(/*) = (C(<J>)(ƒ))*) which is also contractive: ||C(<J>)(/)|| < ||/||. 
It is also easy to see that C ( ) is a contravariant functor on the category of 
compact Hausdorff spaces and continuous maps. It is not so easy to see, but it 
is true, that C ( ) is an anti-isomorphism of categories. Thus every theorem 
about compact Hausdorff spaces and continuous functions is equivalent to a 
theorem about this special class of commutative Banach *-algebras and 
contractive * -homomorphisms. 

We turn to the second class of examples. Let H be a Hubert space and let 
B(H) be the space of all continuous linear maps T: H -* H. Now B(H) is an 
algebra under pointwise linear operations and composition as a product. It is 
also a Banach algebra under the operator norm 

W-^\\T(x)y\\xl.xeH,x + 0) 

and a Banach *-algebra under the Hilbert space adjoint (defined by (T*x9 y) 
= (x, Ty) for all x> y e H where (•, •) denotes the inner product of H) as 
involution. The class of examples we wish to consider consists of any unital 
subalgebra of B(H) which is closed under the involution and closed in the 
norm topology. A subalgebra closed under the involution is called a * -subalge­
bra. 

It turns out that these two classes of examples share one more property, 
called the C*-condition: 

g***||-M2 . 
A Banach *-algebra satisfying the C*-condition is called a C*-algebra. The 
first section of the book under review contains standard, neat proofs of two 
theorems called the commutative and the general Gelfand-Naimark structure 
theorems. These theorems assert that: (1) Every commutative C*-algebra is 
canonically isometrically *-isomorphic to C(S) for some compact space S; 
and (2) Every (not necessarily commutative) C*-algebra is isometrically * -iso­
morphic to some subalgebra of some B(H) closed under both the norm and 
the involution. These are remarkably pleasing results. A very short list of 
axioms is seen to characterize two important classes of concrete examples 
completely. It is even more striking that the commutative case encompasses (in 
the sense of category theory) the topological theory of compact Hausdorff 
spaces. It turns out that in a very deep sense C*-algebra theory is the study of 
"noncommutative topology". Since this idea transcends the scope of the book 
under review we will not pursue it. 

Perhaps it is already clear why one might be interested in C*-algebras. 
However there is an even more basic reason. Most algebraic objects fit neatly 
into well-behaved categories which expose the most fundamental properties of 
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the objects. Unfortunately the objects of analysis, which are generally topologi-
cal-algebraic in nature, often fit awkwardly into their categories. These cate­
gories are less well behaved and sometimes mask, rather than expose, the 
fundamental properties of the analytic objects. However, C*-algebras are 
immune from these problems because of the following fundamental theorem. 

THEOREM. Let A and B be C*-algebras and let <j>: A -> B be a * -homomor-
phism. Then <J> is contractive, 4>(A) is a closed *-subalgebra of B (and hence a 
C*-algebra again), and the natural map <j>: A/KQT (<t>) -» <j>(A) is an isometry. 

As a result of this theorem we can define the morphisms in the category of 
C*-algebras to be *-homomorphisms without any continuity restriction. Hence 
the category is a well-behaved "algebraic" category. 

Looked at more deeply this theorem suggests that the complete norm is 
almost superfluous in C*-algebras. Almost, but not quite. To get the nice 
properties of C*-algebras one must postulate the existence of such a norm. The 
theorem shows that a complete norm satisfying the C*-condition is unique 
when it exists. Thus, in principle, the norm can be derived from the *-algebraic 
structure. It turns out that there are many ways to do this, of which we will 
mention four. 

(1) For each a^Aht p(a) = sup{|A|: Al - a is not invertible in A}. Then 

M | = p ( * * a ) , / 2 . 

(2) \\a\\ = sup{||<J>(a)|| : <f> is a *-homomorphism of A 

into B(H) for some Hubert space H). 

(3) L e t ^ = {u e A: uu* = u*u = 1}. Then 

INI - in*{ £ \\\' a - £ XJUP XJ G c> "; G Au 

(4) Let A + = <Lnj„ ! ajaji aj e A). Then 

H = i n f { / > 0 : / 2 l -a*a<=A+). 

Except for (1) the proof of any of these formulas requires considerable work. 
Each of the formulas implies the first conclusion of the theorem almost 
trivially. The rest of the theorem follows from the commutative theory. 

In addition to the above fundamental results, many others are known which 
point to the very special character of C*-algebras among all infinite dimen­
sional algebras. C*-algebras may be studied as algebras, *-algebras, Banach 
spaces, Banach algebras, or in terms of their order structure. These elements of 
structure are bound together very tightly so that various subsets completely 
determine the whole. 

These remarks show how extremely well behaved C*-algebras are. They are 
also important. However in the reviewer's opinion C*-algebras have sometimes 
been studied because of their good properties, when other objects deserved 
more attention. For instance, consider a locally compact topological group G, 
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and L\G) its usual group algebra under convolution multiplication. The group 
is determined up to homeomorphic isomorphism by the Banach algebra 
structure of L\G). Like any Banach *-algebra, Ll(G) has an enveloping 
C*-algebra C*(G). Many different groups G give rise to isomorphic C*-alge-
bras C*(G). Thus the passage from L\G) to C*(G) destroys much useful 
information. At present C*(G) receives much more attention than Ll(G). 
Eventually the emphasis needs to shift. 

We have discussed the subject of the first section of Goodearl's book, which 
contains results that can be found in many other books. The other two sections 
contain results not so readily available. The second section deals with real 
C*-algebras and the third with AF-algebras. There is no other complete 
exposition of real C*-algebras available in a book. This reflects in part the fact 
that no use has yet been found for real C*-algebras. Indeed at the end of a 
study of real C*-algebras one finds that complexifying (i.e. taking the real 
tensor product with the complex numbers) completely preserves their represen­
tation theory. Despite this final result there is no known way to derive the real 
results (such as the real analogues of the two theorems of Gelfand and 
Naimark included in Goodearl's book) from the complex case without very 
considerable work. The problem is that it is hard to find a workable formula 
for the C*-norm in the complexification. Goodearl therefore derives the real 
case essentially independently. It seems likely that eventually an ingenious, 
easy way will be found to derive the real from the complex theory using one of 
the formulas for the norm described above. The reviewer also believes that the 
placement of various real C*-algebras into a given complex C*-algebra may 
eventually be seen to hold some interest. 

The third part of the book deals with AF-algebras. These were introduced in 
1972 by Bratteli [1] as direct limits (in the category of C*-algebras defined 
above) of a sequence of finite dimensional C*-algebras. In his original paper 
Bratteli characterised them as those C*-algebras which are approximately 
finite dimensional (hence the name AF-algebra) in the following precise sense. 

THEOREM. A separable C*'-algebra A is an AF-algebra if and only if for every 
finite set a]9 a2,...9 an in A and every e > 0 there exists a finite dimensional 
C*-subalgebra B of A and elements bv b2,...,bn of B satisfying \\bj - afW < e 
forj = 1,2,..., n. 

The AF-algebras are remarkably diverse in their other properties. Since they 
are relatively easy to work with, they have provided many important examples. 

Bratteli originally studied AF-algebras by means of diagrams (now called 
Bratteli diagrams). He showed that the diagrams determine the limiting AF-al­
gebras up to isomorphism and that, for instance, the ideal structure of the 
limiting algebra could be read off the diagram. However, it was clear that quite 
different diagrams could give rise to isomorphic AF-algebras and no method 
was known to determine when this happened. In 1976 Elliott [5] introduced a 
rather complicated invariant, called the range of the dimension, which over­
came this difficulty. This invariant consisted of equivalence classes of idempo-
tents in the algebra, where e and ƒ are equivalent if there exist elements a and b 
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with ab = e, ba = ƒ. (In a full matrix ring two idempotents are equivalent in 
this sense if and only if they have the same dimension.) There was also 
additional structure. As X-theory began to be used more for C*-algebras, 
Elliott's invariant was naturally reformulated in terms of K0. 

For any ring A with identity, K0(A) is a group consisting of differences of 
equivalence classes of idempotents. In order to make K0(A) into a group it is 
necessary to use idempotents in all the matrix rings over A at once. This allows 
one to define the sum/? © q of two idempotents/?, q e A as (§^) in the 2 X 2 
matrix ring over A, and so on. In order to achieve the cancellation law in the 
semigroup of equivalence classes, one needs to define a larger equivalence 
relation than that introduced above: p and q are equivalent if there is any 
idempotent r so that p © r is equivalent to q © r as defined above. If 
A = C(S) is a commutative C*-algebra then K0(A) coincides with the topo­
logical invariant K°(S) defined in terms of vector bundles. 

Elliott's work shows that K0(A) is an ordered group when A is an AF-alge-
bra. As an ordered group K0(A) almost determines A up to isomorphism. In 
fact it determines A ® K up to isomorphism, where K is the C*-algebra of 
compact operators. In order to remove the tensor product with K, it is 
necessary to keep track of the equivalence class [1^] of the identity element in 
A also. This gives the following fundamental result. 

THEOREM. Let A and B be AF-algebras. Then A and B are isomorphic as 
C*-algebras if and only if K0(A) and K0(B) are isomorphic as ordered groups 
under an isomorphism taking [\A] onto [lB], 

This theorem is of great value since K0(A) can be explicitly calculated in 
many cases. 

All the above results are efficiently proved in Goodearl's book. In addition 
he characterizes those ordered groups which arise as K0(A) for some AF-alge-
bra A. This result is due to Effros, Handelman and Shen in 1980 [4]. 

Goodearl's book was developed for a one semester introductory course in 
C*-algebras. It could be used for such a course which would be accessible to 
most second year graduate students. Each of its 21 sections is followed by a 
small number of exercises. Since this book is only a brief introduction to the 
subject, a short list of standard references is appended: Dixmier [2], Kadison 
and Ringrose [6], Pedersen [7] and Takesaki [8]; and for those interested in 
additional information on AF-algebras, the small book by Effros [3]. 
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Schur multipliers arise when one studies central extensions of groups. A 
central extension is a surjective homomorphism <p: G -> Q whose kernel is 
contained in the center of G. One also calls G itself a central extension of Q. 
Schur was interested in finding all projective representations of a given finite 
group g, i.e. all homomorphisms p: Q -> PGL„(C) with n > 2. The group 
PGLW(C) comes with a central extension m\ GLn(C) -* PGL„(C), where m is 
the usual map associating with a linear transformation of CH an automorphism 
of projective n — 1 space (n > 2). The kernel of n is the center of GLM(C) and 
may be identified with C* = GL^C). Pulling back m along p one gets a central 
extension <p: G -> Q with kernel C* and the situation is that of Diagram 1. 

G -» Q 

i a i p 

GL„(C) - PGL„(C) 

DIAGRAM 1 
Thus we have associated with the projective representation p of Q the Hnear 
representation a of G. Conversely, if <p: G -» Q is any central extension and a: 
G -> GL/I(C) is an irreducible hnear representation, one obtains by Schur's 
Lemma a projective representation p of Q such that Diagram 1 commutes. 
Schur discovered [7, 1902] that there is at least one finite central extension <p: 
G -+ Q such that a exists for all p (n may vary), i.e. such that the projective 
representations of Q all come from hnear representations of G. If one knows 
G, one may classify its linear representations by character theory. Of course 
one takes G minimal here. Then Schur calls G a representation group of Q 
(Darstellungsgruppe). As this term no longer sounds like what it is trying to 
convey, let us say instead that <p: G -> Q is a Schur extension of Q. In general 
there is no unique Schur extension of Q, but Schur discovered that the kernel 
M(Q) of <p is unique (up to canonical isomorphism). He baptized it the 
multiplier of Q (Multiplikator). Unfortunately he also called H2(g, C*) the 
multiplier and identified it with M(Q) by observing that the character group 
Hom(y4, C*) of a finite abelian group A (such as M(Q)) is isomorphic with A. 


