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No one is very surprised if an area of mathematics can solve its own 
problems. The surprise is when one area of mathematics can help solve those 
of another. In recent years it has been our good fortune to see problems from 
places like algebraic geometry and differential topology solved using nonlinear 
partial differential equations. Of course, an area should not be judged solely on 
how it helps other branches of mathematics—but the publicity sure helps 
convince the skeptical of its current relevance. With this in mind, it is 
important to note that these developments have taken place as part of a 
vigorous general advance in our understanding of nonlinear partial differential 
equations. 

Linear problems dominated analysis in the first half of this century, which 
saw the emergence of the now classical linear functional analysis of Hilbert 
and Banach spaces. A major source of motivation for this work came from an 
attempt to understand the wave, Laplace, heat, and Schrödinger partial dif­
ferential equations of mathematical physics. The development of Fourier 
analysis was one of the most fruitful discoveries, serving simultaneously as 
both a tool and as a subject in its own right. Now many of the linear 
differential equations are linear for a very simple reason: one takes a nonlinear 
equation and bluntly linearizes it (see any derivation of the wave equation 
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utt — c2uxx for a vibrating string). Although these linear equations are often 
only an approximation to nonlinear ones, their usefulness is one of the great 
success stories of mathematics and physics. Hodge theory and the Atiyah-Singer 
index theorem are two of the better-known purely mathematical recent appli­
cations that crucially use linear partial differential equations. 

Over the years a collection of nonlinear problems gradually accumulated in 
the attic. The standard situation was that when a nonlinear differential 
equation arose, mathematicians made a few tentative jabs, and then departed, 
leaving a rich legacy to subsequent generations. For nonlinear ordinary dif­
ferential equations, some real progress was made. The nonlinear pendulum 
equation, 6' + k sin 0 — 0, and spherical pendulum problem could be solved by 
the then emerging theory of elliptic functions, while problems in celestial 
mechanics inspired Poincaré and others to develop "algebraic" topology to 
help clarify the situation. Riemann also made basic contributions to the study 
of shock waves in fluid mechanics. 

But except for some islands of progress, little was done. Our heritage of 
unexplored nonlinear problems included such monuments as the many equa­
tions from fluid mechanics (such as the Navier-Stokes and Korteweg-de Vries 
equations), elasticity, and differential geometry (including minimal surfaces). A 
number of these differential equations arise as the Euler-Lagrange equations of 
a problem in the calculus of variations. The early years of this century added 
the equations of general relativity and many more nonlinear problems in 
Riemannian geometry—which was greatly stimulated by its relevance to 
relativity. Problems accumulated faster than solutions. 

Around 1930 the tide began to turn. From the calculus of variations and the 
geometry of geodesies came Morse theory. At the same time linear partial 
differential equations had begun to be understood more systematically. 
Schauder gave a useful generalization of the Brouwer fixed point theorem to 
Banach spaces, and Leray and Schauder extended the concept of the degree of 
a map. These tools were specifically developed to apply to nonlinear partial 
differential equations. In the same years Douglas and Radó made a 
breakthrough with their existence theorems for minimal surfaces, H. Lewy 
solved an important case of the Weyl and Minkowski problems in differential 
geometry, and Leray proved an existence theorem for the Navier-Stokes 
equations. Progress continued after World War II, including Nash's deep 
implicit function theorem (see [HI]) in 1956. 

For the past twenty years it has been clear that the time is ripe to attack 
nonlinear problems seriously—and with the feeling that there is a reasonable 
prospect of making headway. 

Much of the recent progress on nonlinear problems in geometry boils down 
to solving some partial differential equation, often of elliptic type. The 
underlying goal in many such problems is, given a manifold M find an 
especially "nice object" from which one can more easily read off geometric 
information, much as one may seek nice coordinates in which a matrix is 
diagonalized. 

The de Rham-Hodge theory is an exemplary model of this procedure. (Here 
one seeks nice representatives of cohomology classes, and one finds these 
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representatives by solving the linear Laplace equation Aw = ƒ.) In Riemannian 
geometry the nice object may be a metric g with constant scalar curvature, or 
constant Ricci curvature (these are called Einstein metrics), or constant sec­
tional curvature. Part of the investigation in these problems is, of course, 
determining if there are any obstructions, such as topological ones, to the 
existence of these objects. The existence of these objects customarily involves 
solving a partial differential equation. 

To someone outside of the subject, these questions may appear narrow and 
technical. Here are a few applications. Let M satisfy the topological assump­
tions of the Poincaré conjecture. If one can show that M has a metric with 
constant sectional curvature, then by known (easy) results one finds that 
M — Sn. In three dimensions it turns out that Einstein metrics (i.e. constant 
Ricci curvature metrics) are the same as constant sectional curvature metrics. 
One recent result by R. Hamilton [H2] shows that if a three-dimensional 
manifold has a metric of positive Ricci curvature, then one may deform it to an 
Einstein metric. While it is not clear if this helps solve the Poincaré conjecture 
—one would need to find a metric of positive Ricci curvature—it does give 
very nice metrics for these manifolds; for instance, these Einstein metrics can 
be used as an alternative to the Meeks-Yau procedure using minimal surfaces 
in their contribution to the resolution of the Smith conjecture. 

Another application is to compact Kâhler manifolds (note that this includes 
all smooth projective algebraic varieties). If the Chern class, cx, is negative, 
then one can prove the existence of an Einstein-Kahler metric (Aubin [Au], 
Yau [Y]). Now one knows Chern classes can be written as integrals involving 
curvature (the simplest case is the Gauss-Bonnet theorem). If one does this 
computation for the characteristic class 3c2(M) — cx(M)2 on a surface (com­
plex dimension = 2), then one obtains a complicated expression which H. 
Guggenheimer [G] showed can be written as a sum of squares in the special 
case of an Einstein-Kàhler metric. Combining the last two sentences, one finds 
Yau's observation [Y] that, for a Kâhler surface with c, < 0, 3c2 — c\ > 0; 
moreover, one can easily see that equality can occur only if M is biholomorphi-
cally covered by the ball in C2. 

The above applications all concern constant curvature metrics as the "nice 
object". In other applications, the nice object is one which minimizes some 
functional—or at least is a critical point of it. Some useful functionals are: the 
total scalar curvature for volume-one metrics (gives Einstein metrics), surface 
area (minimal surfaces), the square of the curvature of a connection (Yang-
Mills), and the "energy" of a map between manifolds (harmonic maps, see 
[E-L, 1 and 2]). There have been several recent applications of minimal 
surfaces by Schoen and Yau [S-Y] to positive scalar curvature and to the 
closely related "positive mass problem" in general relativity; these show how 
minimal surfaces can be exploited as a tool in much the same way that the 
corresponding one-dimensional object—geodesies— have been (see also [K]). 
Donaldson [D] see also [F -U], has just used Yang-Mills fields, in particular the 
existence results of Taubes [T] and regularity theorem of Uhlenbeck [U], to 
resolve an important problem in topology. Combined with some other (also 
recent) purely topological information, one consequence of Donaldson's work 
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is the existence of exotic differentiable structures on R4 (it had previously been 
known that R", n =£4, has no exotic structure). 

Applications like these should convince even the most skeptical that ex­
istence and regularity results in elliptic partial differential equations are 
powerful tools. The books by Aubin and by Gilbarg and Trudinger [G-T] are 
timely additions to the literature (one should not forget Morrey's book [M], 
although many find it quite difficult reading). Nonlinear elliptic equations has 
many technical aspects which may make it appear impenetrable. To begin 
with, one must face up to working with the Holder spaces Ck+a (0 < a < \) 
and the Sobolev spaces Hfc (derivatives up to order k are in Lp). The novice 
customarily prefers the spaces C1, C2, etc., but these turn out to be unsuitable, 
except for ordinary differential equations. One way to see this is to consider 
Aw = ƒ. If ƒ E Ck one would hope that u E Ck+1, a gain of two derivatives. 
This is false, but it is almost true. In fact, if ƒ E Ck+a, then u E Ck+2+a; 
similarly, if ƒ E H£ then u E H%+2. Thus, one does gain the desired two 
derivatives if one works with Holder and Sobolev spaces. The general theory of 
elliptic operators is sufficiently well developed that one can often simply read 
(and understand) the main results that summarize long, difficult, technical 
results (Aubin's book, and the Appendix in [B] contain summaries of many of 
these technical theorems). Fortunately, it is possible to read these summaries 
and then immediately launch into the current research literature. At one's 
leisure one can then go back and fill in the gaps. 

For elliptic equations, the basic intuition to be kept in mind is that these 
equations are very much like equations in R". Thus, for the linear equation 
Lu = ƒ on a compact manifold without boundary, one has the Fredholm 
alternative: Im(L) = (kerL*)^ , just as for the linear algebraic equation 
LX = Y. In particular, L is surjective if kerL* = 0. For nonlinear elliptic 
equations T(x, u, Du, D2u) = ƒ, one uses the same tools and ideas—such as 
the implicit function theorem and topological methods—that one uses for a 
system of equations in R". To take a specific example, if the linear map L: 
Rn -> Rn is invertible and F: Rn -+ Rn is continuous and bounded, say 11 (̂̂ )11 
< c for all X in R", then the equation LX — F(X) has (at least) one solution; 
one proves this by merely applying the Brouwer fixed point theorem to 
X = L~{F(X) in the ball B = {\\X\\ < R} with R = c\\L~x\\. A key step is the a 
priori inequality: if X is a solution then \\X\\ < R. The identical assertion and 
proof apply to the elliptic differential equation Lu = F(u), except that now 
one uses the Schauder fixed point theorem (Schauder's theorem has an 
important compactness assumption which is satisfied because the operator L is 
elliptic). For the differential equation one needs a similar a priori inequality on 
all solutions. In fact, one of the basic lessons of the past is that proving 
inequalities is usually the main step in solving a nonlinear problem. 

As one of the major contributors to the resolution of nonlinear problems in 
geometry, Thierry Aubin has focused this monograph on a few significant 
questions on which he has been involved personally, rather than writing a 
broad treatise. The first half of the book is a survey of required background 
material from Riemannian geometry, basic analysis, and elliptic partial dif­
ferential equations. (Some of this "background" does not appear in any other 
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book.) In these earlier chapters—and also occasionally later on in the book— 
the author often states a result, but refers the reader elsewhere for the proof. 
Note that some of the material in Chapter 2 on Sobolev spaces is quite recent, 
especially the sharp values of the constants in the limiting cases of the 
inequalities. The values of these constants are at the core of some basic 
problems (see also the recent article of E. Lieb [L], especially his compactness 
Lemma 2.7). 

My own suggestion to the novice is to skim Chapters 1 -4 quickly and move 
to Chapters 5 or 6, where the applications begin. Refer back to earlier chapters 
to fill in gaps as the need arises, since the specific applications then apply good 
motivation to appreciate the more technical information, particularly from 
Chapter 2 on Sobolev spaces. 

Chapter 6 on scalar curvature, mainly the Yamabe problem, is one of the 
highlights of the book. The Yamabe problem seeks a pointwise conformai 
metric with constant scalar curvature (Yamabe viewed this as a first step in his 
attempt to solve the Poincaré conjecture using analysis). After a short compu­
tation this question reduces to finding a positive solution, u > 0, of the 
deceptively innocent-looking equation 

Aw + c(x)u = Xua (X — const.), 

on a compact n (> 3)-dimensional manifold, with a — (n + 2)/{n — 2). It is 
amusing that, if 1 < a < (« + 2)/(n — 2), by using the calculus of variations 
it is fairly straightforward to solve this equation; the geometry problem (and a 
related problem for Yang-Mills fields) force one to consider the extreme 
exponent a — (n + 2)/(n — 2), where one is at a limiting case of a Sobolev 
embedding theorem. Here, the function c(x) becomes very important and a 
delicate analysis is required, in fact, there are many aspects of this problem 
that are still unresolved, especially in low dimensions (see also the recent 
articles, [B-N, L]). In related work Brezis and Coron [B-C] have used similar 
techniques for the Rellich problem for surfaces of constant mean curvature. 

Monge-Ampère equations are discussed in the last two chapters. Chapter 7 
concerns a Kàhler manifold M. On these the Ricci curvature can be thought of 
as a closed two-form; consequently it represents a de Rham cohomology class. 
One can show that this cohomology class is independent of the metric; to be 
precise, it represents the first Chern class cx(M) (for real dimension 2 this is 
the Gauss-Bonnet theorem for surfaces). Two basic questions are: 

(i) Does M have an Einstein-Kahler metric? 
(ii) If a closed two-form represents cx(M), then is it the Ricci form of a 

Kâhler metric? (This second question was originally conjectured by Calabi.) 
If g = gap is a given Kàhler metric, then these questions reduce to finding a 

real function <J> satisfying the Monge-Ampère equation 

det(g + <J>") = de t (g> ' + x * , 

where ƒ is a given function, X a constant, and <J>" is the Hessian, 

<J>" = d2<j>/dzadzfi, 
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with g + <t>" positive definite. This equation was first solved by Aubin [Au] for 
X > 0. If the first Chern class is negative, then g + <J>" is the desired Einstein-
Kàhler metric. Yau [Y] reproved this assertion, giving some applications to 
algebraic geometry; he also gave the first complete proof of the Calabi 
conjecture by solving the above equation when X = 0 (here, the added diffi­
culty is finding an a priori uniform bound for the solution). For X < 0, in the 
past few months Futaki [F], generalizing the work of Kazdan and Warner 
[K-W], gave an integral condition which is an obstruction to solving the above 
equation, thus also supplying new examples of Kâhler manifolds with first 
Chern class positive but having no Einstein-Kahler metrics. Another recent 
development is that Trudinger (see [G-T], second edition) has a simplified 
proof of Evans' local C2+a a priori estimate of a solution of a nonlinear 
uniformly elliptic equation, so that one can now replace the complicated third 
derivative estimates in this chapter by a more general and conceptually clear 
argument. 

The final chapter considers the Dirichlet problem for real Monge-Ampère 
equations. Some additional related references are [C-N-S] and [C-Y]. 

Aubin's book should make this material much more accessible to those 
mathematicians who wanted to learn it, but were put-off because the required 
background and techniques were so widely scattered in the literature. 

Because all of the problems in this book lead to elliptic equations, it may be 
helpful to point out the recent books and survey articles [C-H; H,l; N,l and 2; 
S; and W], which discuss nonlinear problems in differential equations that are 
not necessarily elliptic. 

The subject of nonlinear partial differential equations is still a wilderness. 
All we know are a few particular examples, and each new example often 
surprises one with unexpected phenomena. The Korteweg-deVries equation 
and its amazing ramifications to so many parts of mathematics is one of the 
most notable instances. There will be more in future years. A tidy systematic 
understanding still seems to lie in the distant future. But for myself, I think it is 
more fun when there are so many surprises and rich opportunities. Nonlinear 
problems are here to stay. To quote Peter Lax, "linearity breeds contempt". 
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