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In the physics literature, many authors discussing quantum phenomena 
begin by telling us what the classical Hamiltonian (i.e. the generator of the 
time evolution) for the system would be if the system were classical, and then 
"quantize" this Hamiltonian. This subjunctive approach to quantum phenom­
ena suggests a facetious operational definition for doing quantum mechanics: 
taking an attitude towards a physical system which otherwise would behave the 
way we used to think it behaved. In fact, some of our more glib colleagues 
never really distinguish whether they are discussing things classically or quan­
tum mechanically. I mention these things to illustrate that even after more than 
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75 years of quantum mechanics, we still seem to need classical mechanics to 
provide us with a suitable foil for discussing quantum phenomena. At least I 
do, and I will use it to roughly survey mathematical activities in quantum 
theory and to locate Berthier's book, Spectral theory and wave operators for the 
Schrodinger equation, among these activities. 

This foil of classical mechanics provides a means for identifying (at least) 
four sorts of mathematical quantum theorists. (1) Apologists. These individuals 
attempt to reconcile quantum with classical mechanics. Bohr and his corre­
spondence principle come to mind, along with current theorists who investigate 
the semiclassical limit of Planck's constant going to zero (sic). Recently, there 
has been considerable interest in quantum systems which, if classical, would be 
ergodic or at least not integrable. (2) Skeptics. These individuals search for an 
as yet undiscovered classical world. Their ranks include hidden variable 
theorists and, most recently, a school of stochastic mechanicians who identify 
the evolution given by the Schrodinger equation with a stochastic process. 
(Their viewpoint can even accommodate spin.) I would assume that the next 
step for these people is to identify a mechanical "ether" underlying the 
processes much as the kinetics of liquids or gases underlies Brownian motion. 
(3) Formalists. Their program is to set quantum mechanics on an axiomatic 
basis or at least a minimal set of principles. Here I would mention von 
Neumann [1], who translated the physical principles of quantum mechanics, 
detailed most notably by Dirac [2], into the language of operators in Hilbert 
space. More recently these researchers have tried to justify the operator-Hilbert 
space representation of quantum mechanics, starting from a more fundamental 
(logical) lattice of propositions. From the standpoint of classical mechanics, 
these individuals are the radicals, ignoring the classical mechanical heritage 
altogether and leaving the connection with classical mechanics, if any, to the 
apologists and to the jurists discussed next. (4) Jurists. The jurists accept the 
formalism and tenets of quantum mechanics. But their specific task is to show 
that the mathematical objects, e.g. operators and measures, which are only 
formally defined, are in fact well defined and lead to reasonable physics. 
(Reasonableness might mean, in part, compatibility with classical intuition.) 
Current examples are the efforts of quantum field theorists to make rigorous 
sense of the 4-dimensional theories handed to them by the particle theorists, 
and efforts of mathematicians to prove localization phenomena associated with 
random potentials. Other jurist activities will be described below. The reader 
should not infer that my categorization of mathematical quantum theorists is 
exhaustive or clear cut (in particular, I am confining discussion to the analysis 
side of matters, omitting the most important algebraic and topological side 
altogether), nor should he infer that individuals are permitted to work in only 
one category. It should also be noted that the categories sketched have taken 
on a life of their own, quite apart from physics. 

The book to be reviewed lies in the jurists' category. Let H = H0 + F be a 
Schrodinger operator acting in the Hilbert space L2(R"); i.e., H0 = -À, A the 
n-dimensional Laplacian and F is a multiplication operator by a real function 
v(x) satisfying certain qualitative criteria, e.g., v(x) -> 0, |x|-> oo, or belongs 
to some weighted L^-space. The goal of the quantum theorist is to "solve" the 



374 BOOK REVIEWS 

time-dependent Schrödinger equation 

\p(t) G L2(R") with \p(0) — \p0 a given initial state vector. Clearly, the solution 
is given by \p(t) = exp(-itH)\p0, with the exponentiated operator defined via 
the spectral theory for the self adjoint operator H, but does the solution behave 
in a reasonable way? In the atomic physics setting, our intuition tells us there 
are bound states, states which if classical would correspond to the particle(s) 
being trapped in the vicinity of the nucleus. Following a physically compelling 
definition for bound state first given by Ruelle, Amrein and Georgescu have 
shown that these states can be identified with the subspace spanned by the 
eigenstates of H [3]. Alternatively, one anticipates unbounded motion: if 
v(x) -> 0, |x|->oo sufficiently rapidly, and if the particle behaved classically, 
it could, with enough energy, escape the nucleus and move asymptotically 
freely. The quantum analogue to this situation is, one might suspect, 

exp(-itH)\p0 — Qxp(-itH0)\p± -» 0, / -> ± oo, 

withexp(-itH0)\l/± the quantum analogue to free classical motion for some 
xp ± . Indeed, this is the case for a large class of potentials V, although research 
on this problem continues, particularly for potentials appropriate to the 
iV-body problem. (The transformations W± : yp ± H> \p0 are known as Moller 
wave operators. They are of independent mathematical interest since they are 
isometries intertwining H0 and continuous parts of H. The physicists' S-matrix 
describing the collision of particles is constructed from these operators.) Much 
of Berthier's book is devoted to a discussion of this scattering theory, as it is 
called, and consists of a readable account of the theories of Kato and Kuroda 
and of the newer theory of Enss and Mourre. 

The book also contains a chapter on Schrödinger operators which have 
periodic potentials and which serve as simple solid state models. It is a 
defensible contention that nowhere is quantum theory more striking than in 
solid state phenomena. Although a classical particle moving in a periodic 
medium can have any (suitably) positive energy, this is not so quantum 
mechanically; only certain energy bands are allowable, a fact which lies at the 
basis of semiconductor and other solid state theory. Although one can well 
imagine classical states with a particle trapped in one of the "wells" of a 
periodic potential, there are no quantum bound states; the particle necessarily 
tunnels through any potential barriers, leaving any bounded region. The author 
includes the proof that there are no bound states (a problem going back to 
Titchmarsh) and then proves the immediate corollary that H — -A + V9 with 
V not too singular locally, periodic or not, has no eigenfunctions of compact 
support. This latter fact can be combined with an argument of Kato concern­
ing the asymptotic behavior of eigenfunctions at oo to give a proof of 
nonexistence of positive energy bound states for certain Schrödinger operators, 
in agreement with our classical intuition that a particle of positive energy 
escapes the influence of the nucleus and moves off to oo. 

One can imagine books of this sort being written for the physicist who 
wishes to learn the appropriate functional analysis, or the mathematician who 
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wishes to learn some quantum mechanics [3,4]. The book serves neither 
purpose; rather, it seems to be for the mathematician who wishes to study 
Schrödinger operators for their own sake. But in this regard the book is more 
introductory, not nearly so penetrating as other works on the subject, for 
example the books of Simon [5,6], Glimm and Jaffe [7], and especially the 
highly readable, comprehensive treatises of Reed and Simon [8]. The author 
has been parsimonious with references, particularly in the text, which could 
frustrate the reader who wishes to pursue the literature further. 

Quantum mechanics is a little like its contemporary, Stravinsky's music—very 
much a part of the standard repertoire and still very revolutionary. The book 
comes down on the side of repertoire—functional analysis, subheading 
Schrödinger operators. My guess is that most readers would want a larger 
perspective, a glimpse of where these operators come from, and why the 
subject is still provocative. 

REFERENCES 

1. J. von Neumann, Mathematical foundations of quantum mechanics, Princeton Univ. Press, 
Princeton, N. J., 1955. 

2. P. A. M. Dirac, The principles of quantum mechanics, 4th éd., Oxford Univ. Press, Oxford, 
1958. 

3. W. O. Amrein, J. M. Jauch and K. S. Sinha, Scattering theory in quantum mechanics, 
Benjamin, Reading, Mass., 1977. 

4. W. O. Amrein, Non-relativistic quantum dynamics, Math. Physics Stud., Vol. 2, Reidel, 
Dordrecht, Holland, 1981. 

5. B. Simon, Quantum mechanics for Hamiltonians defined as quadratic forms, Princeton Univ. 
Press, Princeton, N. J., 1971. 

6. , Functional integration and quantum physics, Academic Press, New York, 1979. 
7. J. Glimm and A. Jaffe, Quantum physics, Springer-Verlag, New York, 1981. 
8. M. Reed and B. Simon, Methods of modern mathematical physics, Vols. I-IV, Academic Press, 

New York, 1972-1978. 

LAWRENCE E. THOMAS 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 9, Number 3, November 1983 
© 1983 American Mathematical Society 
0273-0979/83 $1.00 + $.25 per page 

Hyperbolic boundary value problems, by Reiko Sakamoto, Cambridge Univ. 
Press, New York, New York, 1982, viii + 210 pp., $34.50. ISBN 0-5212-
3568-5 

From its beginning with the study of the vibrations of a stretched string in 
the eighteenth century, the theory of hyperbolic differential equations has 
always stood a little apart from the general theory of linear partial differential 
equations. This was evident in d'Alembert's famous solution formula, in which 
the wave forms appear explicitly as real function values in such a way as to 
make natural the ideas of characteristic lines, domains of dependence, and 
regions of influence. These motifs have carried though the times of Riemann, 
Goursat, and Hadamard, whose monograph on Cauchy's Problem (the initial 


