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The Laplace-Beltrami operator on the upper half-plane with respect to the 
hyperbolic metric is 

y \ dx2 dy2 J 

The arithmetic interest of the eigenfunctions of A invariant under the modular 
group T = SL(2, Z) and its congruence subgroups was signalled by Maass [17], 
who was inspired by earlier work of Hecke. If 7 E GL(2, Q) then Ty — y~lTy 
H F is of finite index in T. Thus if det y > 0 so that y also acts as a fractional 
linear transformation on the upper half-plane one can introduce the operator 

Ty'f- 2 f(yàz), l m z > 0 . 
serY\r 

It is called a Hecke operator. It commutes with A, and acts on its eigenspaces. 
The study of these operators and of those appearing in Hecke's work promises 
to be of considerable importance for diophantine problems, in particular for 
the investigation of the Dirichlet series to which the names of Artin and 
Hasse-Weil are attached. However the spectral theory of A on T-invariant 
functions is a purely analytic problem, of interest in its own right for any 
discrete subgroup T of SL(2, R) whose fundamental domain has finite volume. 
If the quotient of the upper half-plane by T is compact the spectrum is 
discrete, but otherwise there is a continuous spectrum and the corresponding 
eigenfunctions are called Eisenstein series. 

If the quotient is not compact there are cusps. By way of illustration we may 
assume that 00 is a cusp. This means that T contains a subgroup of the form 
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and that a part of the fundamental domain can be taken to be 

{z = x + iy\ -a/2<x<a/2,y > b}. 

Here a and b are positive real numbers, and for convenience we take a—\. 
Then a function \p invariant under T has a Fourier expansion 

00 

*(x,y)= 2 *n(y)e2winx, 
n— — oo 

and \p0(y) is called the constant term at oo. If the constant term at all cusps is 
0 then *// is called a cusp form. If \p is an eigenfunction of A then 

i//' -4ir2n2+n = — ^„, 
y 

so that 

(1) *0 = a / ' 2 + ' + 0 / / 2 " ' , 

with s2 — \ — X. For n =£ 0 the equation has an exponentially increasing 
solution, which can play no role in the spectral theory, and an exponentially 
decreasing solution, which is thus square-integrable in a neighborhood of the 
cusp for the invariant volume is dxdy/y2. As a consequence one can expect 
that the spectrum of A in the space of cusp forms will be discrete. This was 
proved by Roelcke [18]. 

On the orthogonal complement, with respect to the inner product defined by 
the invariant area dxdy/y2, of the space of cusp forms functions are controlled 
by their constant term. Thus on this space A can be regarded as a perturbation 
of the operator y2d2/dy2 on the half-line y > 1 with respect to the measure 
dy/y2, or rather of the direct sum of r such operators if there are r cusps. 
Consequently there should be an r-fold continuous spectrum of Lebesgue type 
on - oo < À < - \ together with a finite set of discrete eigenvalues. 

The present problem has a special feature: the perturbed eigenfunctions can 
be constructed explicitly. Observe that F(z, s) = yl/2+s, z = x + iy, is an 
eigenfunction of A as are all its translates by elements of T. The series 

r0\r 

converges for Re s > \ and gives an eigenfunction of A. One can build the 
analogous function for each cusp, try to analytically continue it to Re s — 0, 
and in this way obtain the eigenfunctions for the continuous spectrum. The 
problem was posed by Roelcke, and solved by him for congruence subgroups, 
for which these Eisenstein series reduce to classical series which can be treated 
with the help of the Poisson summation formula. The general problem he could 
only solve partially, but he was able to continue analytically to the region 
Re s > 0 with techniques from operator theory [19]. The discrete spectrum lies 
in the interval - \ < X < 0 and the associated eigenfunctions are residues of 

The problem was also considered by Selberg, who solved it completely [21]. 
For his proof, at least for one of them, the essential tool for the analytic 
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continuation is provided by inequalities for the coefficients in (1) when \p is an 
Eisenstein series. These are obtained by integration by parts of truncated 
functions [15] or by Fourier analysis [16]. Selberg never published a complete 
proof (cf. [20 and 22]) but the proof of the analytic continuation for series of 
rank one attached to cusp forms given in [16] was inspired by his methods. So 
it contains the same elements, although a little distorted. The proof in [15] is 
perhaps closer to that of Selberg. Since s and -s yield the same eigenvalue the 
functions E(z, -s) attached to the various cusps must be expressible in terms 
of E(z, s), and the resulting functional equations are critical to the proof. 

But Selberg's purpose in [21] went beyond the spectral theory. A function \p 
on the upper half-plane may be identified with a function cp on G — SL(2, R) 
invariant on the right under K = SO(2) by setting <p(g) — i/>(g(0)- If ƒ is a 

function on G with compact support and bi-invariant under K then 

9 » / = fq>(gh)f(h)dh 
JG 

is also the lift of a function invariant under T. The operators <p -> <p * ƒ 
commute with each other and with A, and their spectral theory is identical with 
that of A. They are integral operators with easily computed kernel and, if the 
quotient of G by T is compact and the function smooth, even of trace class. 
The trace is computed by integrating the kernel over the diagonal, and just as 
for the character of an induced representation is easily expressed as a sum over 
conjugacy classes of T of orbital integrals of ƒ. This is a form of the Selberg 
trace formula, in this case a simple but nonetheless powerful tool. If the 
quotient is not compact the operators are no longer of trace class, but their 
restriction to the space of cusp forms is. It is still possible with the help of the 
Eisenstein series to obtain a formula for the trace of the restriction, but the 
analysis is substantially more difficult and the result far more complicated [21]. 

As an application Selberg evaluated in closed form the trace of the Hecke 
operators acting on holomorphic forms of a given weight and level, a problem 
treated at about the same time by Eichler [8] with the help of a Lefschetz 
formula, at least for weight two. For this application one must consider not 
functions on G/K, which is the upper half-plane, but sections of a bundle 
defined by K, in other words functions on G transforming on the right 
according to a certain finite-dimensional representation of K and invariant on 
the left under T. Indeed at the time of writing of [21] a number of develop­
ments (cf. [13 and 14]) were making it clear that the proper setting for the 
theory of automorphic forms was a reductive group G and an arithmetic 
subgroup T, and that many aspects of it were nothing but a study of the 
infinite-dimensional representation of G on L2(T\G). The origin of these 
developments is generally felt to be the 1952 paper of Gelfand-Fomin [10], in 
which representation-theoretic methods were introduced into the study of 
geodesic flows. 

The general problems were considered in the addresses of both Gelfand [11] 
and Selberg [22] in Stockholm. Selberg works with an arbitrary group, although 
he confines himself to A'-invariant functions. He poses the problem of analytic 
continuation of the Eisenstein series in general, sketches very clearly his proof 
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in the rank one case, and draws attention to some special series in several 
variables whose analytic continuation can be effected by means essentially 
classical. In addition he states that he can treat all series for the pair 
T = SL(rt, Z), G = SL(«, R), but no indications of proofs have ever appeared. 
It seems they involve theta series and can only be applied to a limited class of 
groups. He also emphasizes the importance of developing a trace formula in 
general, and of applying it to the Hecke operators. Gelfand works with T\G 
and stresses the spectral problem, which is now to decompose L2(T\G) into a 
direct integral of irreducible representations. He introduces the fundamental 
notion of cusp form in general, and states the important theorem, due to 
himself and Piatetskii-Shapiro, that the representation on the space of cusp 
forms is a discrete sum of irreducible representations when G is semisimple. He 
also points out the similarity of the problem with that arising in scattering 
theory, and it is indeed striking and useful to bear in mind, although the 
analogy cannot be pushed too far and it has not been very profitable to 
transport methods from one domain to the other. 

The spectral analysis of the quantum-mechanical Hamiltonian H for n 
interacting particles Xl9...9Xn in ^-dimensional space often assumes an intui­
tively very simple form (see [12, §13.2] for a brief description and [1] for the 
complete theory). The bound states correspond, if we overlook the movement 
of the center of gravity, to the discrete spectrum and are finite in number. 
More generally if we partition Xl9...,Xn into clusters Sx,..., Sj then the 
Hamiltonian Hj for the particles in Sj alone will have bound states XlJ,...,Xm 

which can move with a momentum p.. For each partition and each choice 
Xk ,!,...,Xk/l of bound states there will be a subspace of the total Hubert 
space L2(Rnd) on which H acts that is isomorphic to L2(R/£/), the underlying 
parameters being/?!,... 9ph and H will act on this subspace as 

2 ^-¥f + C, 
y=i 2mJ J 

where C is the total energy of the bound states. Thus each partition and each 
family of bound states yields a piece of the total Hubert space corresponding 
to freely and independently moving clusters in these states. The total space is 
the orthogonal direct sum of the pieces. 

The analogue in the theory of Eisenstein series of a partition into clusters is 
a cuspidal subgroup of G, which is in particular a parabolic subgroup. If 
G = GLO) these are obtained by choosing a basis {xl9... ,x„} of the «-dimen­
sional coordinate space and a partition SX,...,S( of the basis. If Pj is the 
stabilizer of the span of Ul^k<JSk then the parabolic subgroup associated to 
the basis is H' Pj. 

In general if P is a cuspidal subgroup for T and if one projects T H P on a 
Levi factor of P one obtains a pair @, M like T, G. The Levi factor itself is AM 
where A is a vector group. A complex character x = x(si>' — >si) °f A depends 
on / complex parameters and if $ is a function yielding a discrete part of the 
spectrum for 0 \ M we can lift the product x * $ to a function on P. The 
parameter Sj is the analogue of J — \pj and 0 is the analogue of the family of 
bound states. 
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Taking a function F on G = PK = NAMK of the form 

(2) F(g9sX9...9Sl) = F(g9s) = F(pk9s) = F(namk9s) 

- x(fl) 2 9j(m)%(k) 
. 7 = 1 

we form the Eisenstein series 

(3) E(g,s)= 2 Fiyg.s). 
mp\r 

It converges in a tube over a cone, but not over the point needed for the 
spectral analysis, and if the emphasis is on Eisenstein series as in [22] the 
problem is to show that these functions can be analytically continued as 
meromorphic functions to all of C', and that they satisfy functional equations. 
If the emphasis is on the spectral decomposition of L2(T\G) it must be shown 
as well how they yield the spectral decomposition of L2(T\G). So far it has 
not been possible to solve the first problem without at the same time solving 
the second. They were both solved in [16]. Selberg has recently indicated to me 
that he had an idea for effecting analytic continuation without reference to a 
spectral decomposition but with the help of Fredholm theory. However he has 
not developed it. It would be worthwhile to do so. 

The argument of [16] requires some geometrical assumptions on T. The ones 
used are adequate to arithmetic groups, and indeed based on their reduction 
theory, and to Fuchsian groups of the first kind. They allow one to introduce 
the constant terms 

( <p(ng)dn9 
JrnN\N 

to define the space of cusp forms, as consisting of those functions whose 
constant term is zero for all cuspidal subgroups but G itself, to control the 
behavior of eigenfunctions by means of their constant terms, an important 
analytic tool, and in particular to establish the theorem of Gelfand-Piatetskii-
Shapiro. 

Then if A is of dimension one, so that / = 1 and the series depend on a 
single complex variable, and if the functions <bj are taken to be cusp forms the 
proof of the analytic continuation and the functional equation proceeds pretty 
much as for subgroups of SL(2, R). If the dimension of A is greater than one 
but the <I>7 continue to be cusp forms, then a truncation argument and a partial 
summation to reduce to the one-dimensional case yield the result. The argu­
ment to this point is also presented in [15]. 

The method used in [16] to deal with the general Eisenstein series is to show 
that it can be obtained from a series associated to a cusp form by taking a 
succession of residues, reducing thereby the number of variables at each stage 
by one. It is related to the fact that in two-particle scattering problems the 
bound states appear at poles of the scattering matrix. The central difficulty is 
to convince oneself that all Eisenstein series are obtained in this way. The 
analytic continuation is then immediate, and the functional equations and 
spectral decomposition are obtained in the course of the argument. 
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Its basic nature is easily described. If a function <p on N\G has compact 
support then 

(4) 0(g) = 2 v(yg) 
TDN\T 

is square-integrable on T\G and if <p can be represented as 

1 c 
<p(amk)=-—- / x(a9s)a(s)\dsl\'"\dsl\

129j(m)tJ(k)9 
{27T) JRes = o j 

where s = (sl9...,si) and the $, are cusp forms then 

(5) 0(g) = - \ { ƒ a(s)E(g, s)\dsx\-' • | A/I 
(2TT) JRes = o 

and there is a fairly simple expression for the L2-norm of 6 in terms of a, which 
is an entire function, and certain auxiliary functions. In the simplest cases it is 
of the form 

(6) ƒ |0(g)f</g = - J — ƒ 2 m(u>9s)a(s)â(-o>s)\ds\. 

The group £2 is a finite group of real linear transformations, a Weyl group, and 
the functions m(oo9 s)9 which appear in the constant term of the Eisenstein 
series, satisfy 

(i)m(\9s) = 1, 
(ii) m(o)9 s) = ra(co_1, -cos), 

(iii) m(co1co2, s) — m(col5 <o2s)w(<o2, s). 
In particular \m(co, s)\= 1 if s is purely imaginary. 

The problem is in essence to find a decomposition for the space spanned by 
the functions 0. If a in the formula (6) were 0 then 

f \0(g)\2dg=\2\( \p(s)f\ds\ 
JT\G •'Re s = 0 

where ft = lia is defined by 

P^^Tcn 2 m(o)-l
9ois)a(G)s). 

The operator II is the orthogonal projection of the space of square-integrable 
functions on Re s = 0 onto the space of fi satisfying 

P(cos) — m(o)9 s)P{s) 

for all co and s with Re s = 0. Thus an obvious density argument yields an 
isomorphism of the space spanned by the 6 with a simple L2-space, and it has 
been so constructed that the operators of interest become multiplication by 
functions of s. 

Unfortunately a is usually not 0. The procedure in general is to deform the 
contour to a = 0, thereby picking up residual integrals of dimension / — 1, the 
poles of the functions m(co, s) being the poles of Eisenstein series. If a is 
chosen to vanish along these poles these residues do not appear. Since this 
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restriction does not affect density in the space of square-integrable functions 
on Re s — 0, the /-dimensional spectrum is as before. For an arbitrary a the 
square of the norm of the projection of 6 on the complement of this spectrum 
is given by the residual integral. But then the process can be iterated until one 
arrives at the discrete spectrum and is done. 

There are difficulties. The analogues of the functions m(w, s) may have 
poles of high order; they may have poles on the analogues of Re s = 0; and we 
may be forced into regions in which we can no longer control their rate of 
growth as Ims -> oo. So an elaborate induction is required. There is a great 
deal to be proven at each stage, and to facilitate matters, the notion of 
Eisenstein system, which supplies the title to the book under review, was 
defined. 

The book is indeed largely an exposition of that part of [16] which treats the 
Eisenstein series associated to general forms and the spectral decomposition. 
Some find it a useful adjunct to [16]; others do not. It must certainly be used 
with caution, for it is tendentious, the tone occasionally lapsing into trucu­
lence. 

The first chapter contains a review of results on discrete groups, many with 
only a tenuous connection with the problems to be treated, and a bizarre 
survey of previous work on the analytic theory. In particular the reader is 
misled about the present status of the trace formula and about the role played 
by adele groups. The first reason for introducing the adele groups into the 
theory of automorphic forms is the formal and conceptual simplicity they 
entail. This is particularly true in the theory of Eisenstein series. Moreover the 
spaces that arise in the adelic theory are finite unions of the spaces T\G that 
occur when working with discrete subgroups of Lie groups. So it demands no 
additional analysis, simply a routine and formal re-interpretation of the results. 
Osborne and Warner do their readers a disservice by suggesting otherwise. 

To confine oneself to adele groups is equivalent to confining oneself to 
congruence subgroups and it is best to refrain from this until it is appropriate, 
for the theory of Eisenstein series promises to have applications to the study of 
the cohomology groups of T, and these are of interest for more general classes 
of discrete groups. 

For the trace formula too one hesitates to impose gratuitous restrictions, for 
it does have geometric applications. However, as appears already in Selberg 
and as has been confirmed by later applications to Artin and Hasse-Weil 
L-functions, a principal purpose of the trace formula is to study the Hecke 
operators, which in general can only be handled adelically. So it is convenient 
to derive it directly in the adelic context, indeed critical. First of all the trace 
formula appears as a sum over conjugacy classes, and these are easier to 
analyze in G(Q) than in G(Z). Secondly both Arthur, who has developed a 
general trace formula, and Flicker, who has made several interesting applica­
tions in low dimensions, exploit devices peculiar to adele groups. 

Only the final chapter of the present book refers directly to the trace 
formula. The authors show, using a device first introduced into the subject by 
Duflo-Labesse [7], that convolution with a large class of functions yields 
operators of trace class on the space of cusp forms and, in addition, operators 
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on the total continuous spectrum with continuous kernels, a result due to 
themselves. The concept of a trace formula implicit in this chapter and in their 
introduction ignores the experience of the past decade. It differs from that of 
Arthur, which is highly developed [2, 3], has been applied [9], and has led to a 
body of results of interest in their own right [4-6]. Incidentally, in Arthur's 
hands the trace formula has taken a shape somewhat different than antic­
ipated. He introduces directly a truncated kernel, evaluates its trace in two 
ways, and then deals with the problem of interpreting both sides. 

In the second chapter Osborne and Warner devote considerable space to 
their geometric assumptions on T, finally equivalent to those of [16], and they 
point out that is easy, by introducing a compact factor, to construct groups 
which violate them. The compact factor is a standard device for dealing with 
cohomology of T with coefficients; so there is motivation for extending the 
theory to these groups, even though it does not appear to be needed for 
arithmetical purposes, but the authors do not pursue the problem. Chapters 3 
and 4 are reviews of material on automorphic forms and Eisenstein series 
associated to cups forms. 

Chapters 5, 6, and 7 are the heart of the book and are an exposition of the 
induction argument of Chapter 7 of [16]. This induction demands the verifica­
tion of a number of technical conditions at each stage, and a feature of their 
presentation, which will be useful even to the reader of [16], is that they label 
these conditions, and clarify their logical interdependence. In addition a 
number of facts, like those of Propositions 5.1, 5.2, 5.7 and Lemma 5.5, which 
are simply taken for granted or stated without comment in [16] are isolated 
and proved, and this may be a help to the inexperienced reader. On the other 
hand the global structure of the induction is obscured. So it may be worthwhile 
to close the review with a technical discussion of the proofs, in an attempt to 
provide a guide to these three chapters and to the last chapter of [16] as well. 

The pair ( I \ G) = (GL(«„ Z) X • • • X G L ( « „ Z), G L ( « , , R ) 
X ••• XGL(«r,R)) is typical. A conjugacy class of cuspidal subgroups is 
determined by partitions 11/= ( 5 / , . . . ,£ƒ'} of «,., 1 < /' < r, and the Levi 
factor is then isomorphic to XIJ"= t XÎ = ! GL(«/,R) if n{ —\S{\. So these pairs 
are sufficiently general to permit induction. 

Two conjugacy classes of cuspidal subgroups are associate if for all / the 
partition 11/ is obtained from 11/ by a permutation of {1,...,«,.}. In contrast to 
scattering theory there is here an easy initial decomposition of L2(T\G) into a 
direct sum of spaces L(9). The space L(9) is the closed span of the functions 
0 introduced above as P varies over 9. It is the space L(9) we need to 
decompose. 

Let ??' > 9 mean that some family of partitions defining 9 is finer than one 
defining ty' and let r{9) be the rank of the P in ó j \ namely 2///. The 
decomposition of L(9) takes the form 

where L(9\ 9) itself is a direct sum of direct integrals with respect to 
r(^-dimensional Lebesgue measure. In particular when (3)/ = {G} the rank 
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r(?P') is a minimum and 

L({G},6?)= ®V®L2(W) 

where V are subspaces of functions on T\G square-integrable modulo the 
centre of G and G acts irreducibly on V. The action on L2(W) is given by 
g = ( g i , . . - , g r ) : / ( ^ - - - ^ r ) ^ n ; - = 1 ( d e t g y V ( ^ . - . ^ r ) . Thus V®L2(W) 
= J y® X(ixl9.. .9ixr) dxx • • • dxr. The sum runs over all such V modulo the 
equivalence F = V<8> xOxl9...9ixr)9 * i , . . . ,* , .£ R. 

It is important that the /^-finite functions in these spaces can all be 
expressed as linear combinations of residues of Eisenstein series associated to 
cusp forms on Levi factors of parabolic subgroups in <3\ Such a residue is 
obtained by choosing the parabolic subgroup P and I collections 4>j, tyj9 

1 <y < ni9 of functions on 0 \ M and K respectively, where each <&j is a cusp 
form, building the functions Ft(g9 s), then choosing polynomials at(s)9 and 
finally taking the (/ — r)-fold residue of 2f=1 ai(s)Ei{g9 s) with respect to / — r 
linear functions on C'. 

The analytic continuation of all Eisenstein series is immediate. Consider that 
defined by (3) in which for convenience we replace P by P'. The functions <bj 
occurring in (2) will then be finite linear combinations of functions in 
L 2 (0 ' \M ' ) transforming according to an irreducible representation of M'. 
Using the spectral decomposition we may even suppose that each function 
a'm' -» */tfi') lies in some V9 with V® L2(X!') Q L({M'}9 %,) and finally 
that it is a residue of some ^at(s)EI(g9 s), the El being Eisenstein series for 
M' attached to cusp forms on the Levi factor M of a cuspidal subgroup PM in 
M'. But PMN' is then a cuspidal subgroup P of G with Levi factor M and the 
Eisenstein series attached to the <I>y is an (/ — /')-fold residue of 2 ai(s)Ei(s), Et 

being defined by the same collection as El but as an Eisenstein series on G 
attached to P. Since y2ai(s)Ei(s) is meromorphic in Cl' the residue is mero-
morphic on C'. This gives the analytic continuation and, if one likes, the 
functional equations as well. In fact this part of the argument must be 
incorporated into the inductive construction, because as one peels off L(99 9)9 

L(<3"9 9% r(9f) = r(9) - 1, L(<$\ <$)9 r(9') = r(9) - 2, and so on, succes­
sively from L(9) one must use the analytically continued Eisenstein series to 
decompose them as direct integrals. 

The induction demands a deformation of contours in complex spaces of the 
form Re s = a, s — (sl9. ..,£/). The first point to check is that this does not 
force one to contend with infinitely many residues. This is Proposition 5.3 of 
Osborne-Warner (Lemma 7.2 of [16]). The proof requires Lemma 7.3 of [16], 
which does not seem obvious to me but which Osborne-Warner insert as an 
observation, with no proof and no comment but a page number in [16]. 

The (/ — /')-fold residues arising from the integrals (5) will be of the form 

(7) _» /V( j ) £ >( g > ^) |^ | 
(2w) J 

where s' lies in an /-dimensional space X C C'. There are many of them and 
considerable redundancy can occur, in the sense that the eigenfunctions 
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E '(g, s') parametrized by one space may be the same as those parametrized by 
another. The purpose of Proposition 5.4 (Lemma 7.4 of [16]) is to control the 
redundancy. It also yields the functional equations immediately, but the 
authors do not point this out clearly. Rather they devote a separate Chapter 6 
to them, burying a simple fact in a welter of notation. Proposition 5.6 
(Corollary to Lemma 7.4 in [16]) guarantees in essence that the residues one 
obtains are eigenfunctions. 

The technical device used to overcome the lack of information on the growth 
of the functions E\g, s') in (7) on the sets Res' = a' is the spectral theory of 
an operator analogous to the Hamiltonian. It is used in Propositions 5.8 and 
5.9 (Lemmas 7.5 and 7.6 of [16]) to construct the spaces L((3)/, (3)). Their 
structure is manifest, for at this point one has the analytic continuation of the 
relevant Eisenstein series, although one has to take Proposition 5.11 (Corollary 
to Lemma 7.6), which guarantees that they are analytic on the unitary axis, 
into account. Thus one has the spectral decomposition, but Osborne and 
Warner wait until Chapter 7, which seems nonetheless to be clearly written, to 
notice it. 

However all this presupposes the successful construction of Eisenstein 
systems at each stage, and the final struggle comes in proving Theorem 5.12 
(Theorem 7.7 (= 7.1) of [16]). After the first stage the subspaces X of formula 
(7) intersect, so that at the following stages there may be several residues 
attached to the same space ^ b u t to different a'. Thus it is necessary to choose 
a definite OQ and deform all contours to Res ' = OQ, thereby introducing 
residues of one dimension less, which have to be set aside momentarily but 
taken into account at the next step. It is difficult to juggle all these spaces and 
to ensure that none without the properties essential to the induction insinuate 
themselves. The argument of [16] is compressed into ten pages, but Osborne 
and Warner wisely take fifty-four, which include however Lemma 7.1 of [16]. 
The arguments are similar but not identical and involve delicate geometric 
considerations, on which everything hangs, as by a thread. 
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CR submanifolds of Kaehlerian and Sasakian manifolds, by Kentaro Yano and 
Masahiro Kon, Progress in Mathematics, Vol. 30, Birkhauser, Cambridge, 
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The theory of submanifolds of Kaehlerian manifolds is one of the important 
branches of differential geometry. It began as a separate area of study in the 
19th century with the investigation of projective varieties in a complex projec­
tive ra-space CPm. It was J. A. Schouten and D. van Dantzig [10, 11] who, in 
1930, first tried to transfer results in differential geometry of Riemannian 
manifolds to complex manifolds. In their papers there appeared a Hermitian 
space with the so-called symmetric unitary connection. The space with the 
same connection was also found independently by E. Kâhler [8], and such a 
space is now called a Kaehlerian manifold. Since then, Kaehlerian manifolds 
have been studied extensively. Many important results have been obtained. 

The study of complex submanifolds of Kaehlerian manifolds from a dif­
ferential geometric point of view (that is, with emphasis on the Riemannian 
metric) was initiated by E. Calabi and others more than 30 years ago. Such a 
theory has become a very active branch of modern differential geometry in the 
last two decades. In particular, many important results on complex submani­
folds in complex-space-forms have been obtained. 


