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Functional integration and quantum physics, by Barry Simon, Academic Press, 
New York, 1979, ix + 296 pp., $29.50. 

Quantum physics, a functional integral point of view, by James Glimm and 
Arthur Jaffe, Springer-Verlag, New York, 1981, xx + 417 pp., $16.80. 

These two books have strikingly similar titles, but the topics discussed are 
almost disjoint. Common to both is the approach to problems of quantum 
physics by first studying them in imaginary time. 

If we know all about the selfadjoint operator H, then we know all about the 
solution \p = e~itH\pQ of the Schrödinger equation; but if we know all about 
ƒ = e~tHf0 (the solution of the Schrödinger equation in "imaginary time"), then 
we know all about H. 

The simplest H of interest in quantum physics is of the form - ^A + V on 
L2(R"), where V is the operator of multiplcation by a function. This case is 
discussed in depth by Simon. The Feynman-Kac formula gives an explicit 
expression for the kernel of the integral operator e~tH' 

(1) e""{a, b) = ƒ exp(-jfV(«(5)) ds) d^aMt. 

The integration is over the space of all paths co: R -> R" and fx0 a bt is the 
condition Wiener measure for paths starting at a at time 0 and ending at b at 
time t. 

As a simple example of the power of functional integration, Simon gives 
Symanzik's proof of the Golden-Thompson inequality 

(2) Tr e~tH < f ^P^* e-t{P
2/2+ v(x)) 

V } J (2TTY 

The trace on the left contains a wealth of information on the distribution of 
eigenvalues; the integral on the right is a classical phase space integral. To 
evaluate the trace, set a = b in (1) and integrate over W. We can estimate 

exp(-/V(W(*))&) < ^fQxp(-tV(o>(s)))ds, 

by Jensen's inequality, and then (2) follows. Details are in Simon's Theorem 
9.2; the point is that the usual tools of measure theory (monotone convergence, 
Jensen's inequality, etc.) can be brought to bear when working in imaginary 
time since we have a probability measure on paths. Simon discusses a vast 
number of other applications of functional integration to the Schrödinger 
equation. Of particular interest to probabilists, because of the occurrence of 
stochastic integrals, is the discussion of Schrödinger operators with magnetic 
fields. 
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Roughly speaking, Simon in this book discusses ^-dimensional random 
functions of 1 variable whereas Glimm and Jaffe discuss one-dimensional 
random functions of v variables. The main topic of the Glimm-Jaffe book is 
constructive quantum field theory for a scalar field in two space-time dimen­
sions, with an imaginary time approach. When the time in Minkowski space-
time is made imaginary, what results in Euclidean space. The free Euclidean 
field is the Gaussian stochastic process <J> indexed by test functions ƒ, with 
mean 0 and covariance 

E<l>(f)<t>(g)=(f,(-A + m2y,g), 
where E denotes the expectation and m2 is a positive constant. This process, 
invented by Loren Pitt, is a natural generalization to higher dimensions of the 
Wiener process. Call the corresponding probability measure /x0; it may be 
realized on the space of distributions. 

In a formal sense, the probability measure ju corresponding to a polynomial 
self-interaction P is given by 

(3) dfi = -exp(-J\p(<f>(*)) dxj dix0 

where Z is a normalization constant. There are some problems with this: (i) 
How does one form a polynomial in a distribution? (ii) Formal perturbation 
theory indicates that lower-order coefficients of P should be infinite, (iii) The 
measure JU0 is ergodic under translations, so there is no translation-invariant 
probability measure JU that is absolutely continuous with respect to it other 
than fx0 itself. 

To approach these problems, replace R2 by the lattice eZ2. We need 
estimates independent of e so that we can take the continuum limit e -> 0. Let 
A be a bounded region of R2, and let Ae = A n eZ2. We need estimates 
independent of A so that we can take the infinite volume limit A -* R2. In the 
colorful language of physics, these two problems are referred to as the 
ultraviolet problem and the infrared problem. Then the analogue of (3) is 

dMeA= ^ e x p ( - 2 ^ ( < K * ) y - \l4>(x)AeA(x9 yMyjjildtix), 

where AeA(x9 y)9 for x and y in Ae, is the matrix that is 4 + m2e2 for x — y9 -1 
for | JC — y | = e, and 0 elsewhere (this is the matrix of -AeA + m2, where AeA is 
the difference-operator analogue of the Laplacean). We can read off some 
properties of this measure. There is a weighting factor, involving the poly­
nomial P, at each lattice site. Then to each pair of neighboring lattice sites x 
and y there is a term <j)(x)<j>(y) in the exponent. Those configurations <f> for 
which the exponent is large are favored by the probability measure jueA, so 
there is a tendency for <J> to have the same sign at neighboring sites. In the 
language of statistical mechanics, the system is ferromagnetic. Also, only 
nearest neighbors are coupled. If a subset II of Ae divides Ae into two disjoint 
subsets, and if Xx and X2 are random variables living on those subsets, then 
EeAXxX2 = EeAYxYl9 where Yt is the conditional expectation of Xt given the 
configuration on II. This is the Markov property, which is exploited via the 
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Osterwalder-Schrader positivity property EeA6X- X> 0 where 0 is the reflec­
tion in a hyperplane II. 

Once again, quantum physics has turned into probability theory. The theory 
of random functions indexed by higher-dimensional spaces has been largely 
the province of those doing statistical mechanics. The imaginary time approach 
to constructive quantum field theory led to an extraordinarily fertile interac­
tion of quantum physics and statistical mechanics. 

The ultraviolet problem in two dimensions is relatively easy. Glimm and 
Jaffe do not give details in this book of their solution of the much harder 
ultraviolet problem in three dimensions. A variety of techniques from statisti­
cal mechanics is used to control the infrared limit, most notably correlation 
inequalities and cluster expansions. In Part I, among other things, the authors 
give beautiful expositions of these techniques in the simplest cases, and this 
eases the way for the quite difficult applications to field theory. 

Once the Euclidean random field <J> has been constructed, the corresponding 
quantum field may be obtained. There is one proviso: <j> may not be ergodic 
under translations, which means that the quantum field may not have a unique 
vacuum. This is not a technicality. Indeed, ergodicity may fall, leading to a 
phase transition. The successes of constructive quantum field theory discussed 
here by Glimm and Jaffe have gone far beyond showing the existence of 
models—phase transitions, broken symmetry, particle structure, the scattering 
matrix, and other topics of physical interest have been thoroughly explored. 

Functional integration has been far more successful in quantum physics than 
those of us who first learned the purely Hilbert-space approach ever dreamed. 
There is a mystery in this. Perhaps the mathematical trick of analytical 
continuation in time, which is applicable in some but not all situations, is not 
the key to the mystery. Perhaps probability theory has been so successful 
because the phenomena of quantum physics are inherently random phenom­
ena. Whether this speculation is correct, only non-imaginary time will tell. 

EDWARD NELSON 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 8, Number 2, March 1983 
©1983 American Mathematical Society 
0273-0979/82/0000-1132/$02.00 

Real elliptic curves, by Norman L. Ailing, Mathematics Studies, Vol. 54, 
North-Holland Publishing Company, Amsterdam, 1981, xii + 350 pp., 
$36.25 US/Dfl. 85.00 paperback. ISBN 0-4448-6233-1 

The author has (in collaboration with N. Greenleaf [2]) developed an 
interesting approach to real elliptic curves as an object of study in their own 
right, and not as a special case of complex analysis (as the universal imbedding 
subject). The theory was present in classical literature going back to 1882 
(Klein [8]), and the historical context has stimulated the author to make a 
scholarly survey of elliptic functions from even before Gauss. This survey 


