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PROPER HOLOMORPHIC MAPPINGS 

EXTEND SMOOTHLY TO THE BOUNDARY 

BY STEVEN BELL AND DAVID CATLIN 

Biholomorphic mappings between smooth bounded domains in Cn are 
known to extend smoothly to the boundary in a wide variety of cases [7, 5, 1]. 
Much less is known about the boundary behavior of proper holomorphic mappings. 
In this communication, we sketch the proof of 

THEOREM 1. Suppose ƒ : Dx —• D2 is a proper holomorphic mapping 
between smooth bounded pseudoconvex domains contained in Qn. If the Bergman 
projection associated to Dt maps C°°(Dt) into C 0 0 ^ ) , then f extends smoothly 
toD1. 

Kohn has proved that the Bergman projection associated to a smooth 
bounded domain D maps C°°(D) into C°°(D) when D is strictly pseudoconvex 
[11], and more generally, when the boundary of D satisfies certain geometric 
conditions [12]. Diederich and Fornaess [6] have shown that these conditions 
are satisfied when the boundary of D is real analytic and pseudoconvex. 

REMARKS. (A) Our proof of Theorem 1 uses arguments similar to those 
used in [2] where it was assumed that the Bergman projection preserved the 
space of functions which are real analytic up to the boundary. The additional 
complications encountered in the present work stem from the fact that the ring 
of germs of smooth functions is not a unique factorization domain. 

(B) K. Diederich and J. E. Fornaess have informed us that they also have 
obtained a proof of Theorem 1 [8]. 

SKETCH OF THE PROOF OF THEOREM 1. A complete proof of this 
theorem will appear in [4]. In [3], it is shown that under the hypotheses of 
Theorem 1, the Jacobian determinant of f u = Det[ / ' ] , extends smoothly to 
Dt and ufa extends smoothly to Dt for each multi-index a. Hence, we are 
faced with a division problem: to show that u divides uf in C°°(Z)1), given that u 
and ufa are in C 0 0 ^ ) for each a. A necessary first step in attempting to solve 
this division problem is 

LEMMA 1. Under the hypotheses of Theorem 1, the Jacobian u = Det[ ƒ'] 
vanishes to at most finite order at each boundary point of Dx. 
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We shall describe the proof of Lemma 1 at the end of this note. 
The main tool used to prove Theorem 1 is an adapted version of the 

Mather division theorem. Let U be the upper half plane {Im z > 0} in C, and 
let U be its closure. Let r ^ denote the set of functions h{z, x) which are de­
fined in a neighborhood of (0, 0) in U x RN, which for fixed x are holomorphic 
in z on U, and which are smooth up to the boundary of U x R^ near (0, 0). 
Suppose that F(z, x) and G(z, x) are in 1^ and that (dmF/3zm)(0, 0) =£ 0. Then 
there exist a neighborhood W of the origin in C x R^, a function Q(z, JC) in r ^ , 
and smooth functions ak(x) such that for (z, x) in W H U x R^, 

m - l 

G(zyx) = Q(z,x)F(zy x)+ £ ak(x)z*. 
k=0 

The proof of this division theorem is a straightforward modification of the proof 
of the Mather division theorem given in, for example, [10]. In the usual way, an 
analogous version of the Malgrange preparation theorem follows for the class P^. 

We now make a change of variables to place the functions u and ufa in the 
space r2n~2. Let z0 be a point in the boundary of Dx such that u(zQ) = 0, 
and let (zv z2, . . . , zn) be holomorphic coordinates in a neighborhood of z0 

such that 
(i) the Zj direction is transverse to the boundary of Dt at zQ, and 
(ii) u vanishes to finite order m dit zQ in the zx direction. 

Let x G R2w~2 be given by x = (x2, y2, . . . , xn, yn) where zk = xk 4- iyk. 
For fixed JC, we may apply the Riemann mapping theorem in the variable zx to 
flatten out the boundary. Furthermore, this can be done smoothly in x. Under 
this change of variables, a holomorphic function on Dt in C^ip^) is transformed 
into a function in the class r2n~2. 

Let ft denote the first component of the mapping f. The functions u and 
w/{ are in r 2 " " 2 for ƒ = 1, 2, 3, . . . . We now apply the division theorem to 
G = ufx and F = u. We obtain 

w/i = qu + r 

where r is a polynomial in z = zx of order m ~ 1 with smooth coefficients in x. 
Note that f1=q + rju. A simple induction argument using the fact that uf[ is 
in r 2 " " 2 for each positive integer ƒ reveals that rJ+1/uf is in T2w~2 for all/'. 

We can assume that 

u(z, x) = h{z, x) lzm + ̂  bk(x)zk\ 

where h(0, 0) =£ 0 and h G r2M~2 and the bks are smooth. Let v(z, x) 
= zm + Upsf bk(x)zk. At this point, we want to show that the derivatives 
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(dv/dzv)(r/v)(z, x) are uniformly bounded by a constant Cv which is independent 
of x for x in a neighborhood of 0. This is accomplished via 

LEMMA 2. Let UR = {z G U: \z\ < ƒ?} 0«<2 /ef rfc(z) tf«<2 ̂ (z) be sequences 
of polynomials of the form 

m—l m — \ 

'*(*) = E %**' and vk(z) =zm + E h**'* 
/=0 /=0 

w/zere r/ze coefficients a- k and b> k are bounded in absolute value by a constant 
M for all j and k > 0. Assume also that for each positive integer N, there is a 
constant CN > 0 such that for all k> 0, 

Sup 
z^UR 

< C ; N' 

Then there are constants C'N such that for all k, 

Sup 
zeuR/2 

I^-ï-iz) <C^ 

Using the lemma, one immediately obtains that the derivatives of/x(z, x) 
in the z variable are bounded in a neighborhood of (0, 0) in U x R2n~2. In the 
original coordinates, we have that the derivatives 

3zf fit*» >Zn) 

are bounded near zQ independent of (zt, . . . , zn). 
Since there is a dense open subset of complex directions zx for which the 

above procedure can be carried out, it follows easily that ft is smooth up to the 
boundary near z0. All the other components of ƒ are treated analogously. 

PROOF OF LEMMA 1. The classical Remmert proper mapping theorem 
states that ƒ is a branched cover of some finite order m. Let Ft,F2, . . . 9 Fm 

denote the m inverses to ƒ which can be defined locally on D2 away from the 
image of the branch locus of/. In [3], it is shown that any symmetric function 
of Fx, F2, . . . , Fm extends smoothly to D2. Hence, the n functions defined on 
C1 x D2 given by 

m 

fc=i 

are in C°°(Cn x D2). Note that if w = /(z), then P/z, w) = 0 for i = 1, 2 , . . . , n. 
Let z0 be a boundary point of Dx and let B6 denote the ball of radius 8 

about z0. Using the polynomials Pt and the fact proved in Range [13] and 
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Fornaess [9] that there is a positive integer 77 such that 

dist(z, bDj* < dist(/(z), bD2) < dist(z, bDt)
x^9 

it can be shown that the volume Bd n Dx is mapped under ƒ onto a volume 
whose measure is greater than a constant C times dM where M and C are inde­
pendent of ô. Hence, using the fact that \u\2 is equal to the real Jacobian deter­
minant of/, we obtain that 

f \u\2 > CdM. 
JBsnD1 

Therefore, 
Sup \u\2 >C'8M\ 

BônDx 

for some constants C' and Af* which are independent of ô. Hence u vanishes to 
at most finite order at zQ. 

REMARK. It is interesting to note that the assumption that the domains 
Dx and D2 are pseudoconvex is only used at one point in the proof of Theorem 
1. Pseudoconvexity is only assumed in order to obtain the crucial inequality 

dist(z, bDj* < dist(/(z), bD2) < dist(z, bDx)
1^. 
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